【題目】已知α,β均為銳角,sinα= ,cos(α+β)= ,求(Ⅰ)sinβ,(Ⅱ)tan(2α+β)

【答案】解:(Ⅰ)∵α均為銳角,sinα= ,得cosα= , 又∵α+β∈(0,π),cos(α+β)= ,可得:sin(α+β)= ,
∴sinβ=sin(α+β﹣α)=sin(α+β)cosα﹣cos(α+β)sinα= =
(Ⅱ)∵tanα= ,tan(α+β)= ,
∴tan(2α+β)= = =
【解析】(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sin(α+β)的值,利用兩角差的正弦函數(shù)公式即可計(jì)算得解.(Ⅱ)由(Ⅰ)可求tanα,tan(α+β),進(jìn)而利用兩角和的正切函數(shù)公式即可計(jì)算得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正切公式的相關(guān)知識,掌握兩角和與差的正切公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=e|xa|(a∈R)滿足f(1+x)=f(﹣x),且f(x)在區(qū)間[m,m+1]上是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83


(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

總計(jì)


(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2名,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn), 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,g(x)=x+lnx,其中a>0.
(1)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若對任意的x1 , x2∈[1,e](e為自然對數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實(shí)數(shù)m的取值范圍;
(3)若f(x)≥nx對任意的實(shí)數(shù)x≥1成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .

1)令,求的單調(diào)區(qū)間;

2)已知處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,過點(diǎn)B(0,﹣2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)設(shè)為F2
(1)求橢圓的方程;
(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R. (Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(Ⅱ)設(shè)g(x)=f′(x)ex . 求函數(shù)g(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案