已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的集合.

(I)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,極小值;(II).

解析試題分析:(I)先求已知函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性求函數(shù)的極值;(II)由已知得,求解的恒成立問(wèn)題,即是求解恒成立時(shí)的取值集合,對(duì)兩種情況,結(jié)合函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系進(jìn)行討論,求得每種情況下的取值,最后結(jié)果取兩部分的并集.
試題解析:(I)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/76/a/6o8ju.png" style="vertical-align:middle;" />.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/58/e/1n96k4.png" style="vertical-align:middle;" />,                                               1分
,解得,                                            2分
當(dāng)時(shí),;當(dāng)時(shí),,                    3分
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.           4分
處取得極小值.                              5分
(II)由知,.          6分
①若,則當(dāng)時(shí),,
與已知條件矛盾;                                    7分
②若,令,則,
當(dāng)時(shí),;當(dāng)時(shí),,
所以,                  9分
所以要使得不等式恒成立,只需即可,
再令,則,當(dāng)時(shí), ,當(dāng)時(shí),,
所以上單調(diào)遞減;在上單調(diào)遞增,即,所以,
綜上所述,的取值集合為.                              12分
考點(diǎn):1、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;2、利用導(dǎo)數(shù)研究函數(shù)的極值;3、對(duì)數(shù)函數(shù)的定義域;4、分類討論的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),,為函數(shù)的圖象上任意不同兩點(diǎn),若過(guò),兩點(diǎn)的直線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)若函數(shù)在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)任意的正整數(shù)n,不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的值;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,其中為常數(shù),,函數(shù)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),有;
(3)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),,函數(shù)的圖象與軸的交點(diǎn)也在函數(shù)的圖象上,且在此點(diǎn)有公切線.
(Ⅰ)求,的值;
(Ⅱ)試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若時(shí),求處的切線方程;
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校內(nèi)有一塊以為圓心,為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該?倓(wù)處計(jì)劃對(duì)其開(kāi)發(fā)利用,其中弓形區(qū)域(陰影部分)用于種植學(xué)校觀賞植物,區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學(xué)校觀賞植物的成本是每平方米20元,種植花卉的利潤(rùn)是每平方米80元,種植草皮的利潤(rùn)是每平方米30元.

(1)設(shè)(單位:弧度),用表示弓形的面積;
(2)如果該?倓(wù)處邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)的大小才能使總利潤(rùn)最大?并求出該最大值.
(參考公式:扇形面積公式表示扇形的弧長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),若,存在,使,求實(shí)數(shù)
取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案