2n+1-1的完全平方=
 
考點:有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:利用完全平方公式即可得出.
解答: 解:(2n+1-1)2=22n+2-2×2n+1+1=4n+1-2n+2+1.
故答案為:4n+1-2n+2+1.
點評:本題考查了完全平方公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列4個命題
①“若x+y=0,則x,y互為相反數(shù)”的逆命題; 
②“若x2≥4,則x≥2”的逆否命題
③若f(x)存在導函數(shù),則“f′(x0)=0”是“x0為f(x)的極值點”的充要條件
④直線l1不再平面α內(nèi),直線l2在平面α內(nèi),則l1∥α是l1∥l2的必要不充分條件.
其中正確命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log0.5(4x-3)
的定義域為(  )
A、(
3
4
,+∞)
B、[-∞,1)
C、[
3
4
,1)
D、(
3
4
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=
a+i
i
(其中i為虛數(shù)單位)的實部與虛部相等,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由余弦函數(shù)的周期性可知:
余弦函數(shù)在每一個閉區(qū)間
 
上都是增函數(shù),其值從-1增大到1;在每一個閉區(qū)間
 
上都是減函數(shù),其值從1減小到-1.
從上述對正弦函數(shù)、余弦函數(shù)的單調(diào)性的討論中容易得到:
正弦函數(shù)當且僅當x=
 
時取得最大值1,當且僅當x=
 
時取得最小值-1;
余弦函數(shù)當且僅當x=
 
時取得最大值1;當且僅當x=
 
時取得最小值-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin3αsin3α+cos3αcos3α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,是真命題的是(  )
A、平面內(nèi)與兩定點距離之和為常數(shù)的點的軌跡是橢圓
B、平面內(nèi)與兩定點距離之差絕對值為常數(shù)的點的軌跡是雙曲線
C、平面內(nèi)到點A(0,3)和到定直線y=-6距離相等的點的軌跡是拋物線
D、一個命題的否命題為真,則它本身一定為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
ax2+bx+18
的定義域為[-3,6],求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若cosαcosβ+sinαsinβ=0,則sinαcosβ-cosαsinβ值為
 

查看答案和解析>>

同步練習冊答案