過點(diǎn)的直線交雙曲線于兩個(gè)不同的點(diǎn)是坐標(biāo)原點(diǎn),直線的斜率之和為,求直線的方程。

直線的方程為


解析:

設(shè)直線的方程為代入中可得,當(dāng)時(shí),設(shè),則,又,∴,∴,于是有,解得,并驗(yàn)證這個(gè)結(jié)果是符合的約束的,∴直線的方程為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)P為雙曲線與圓x2+y2=a2+b2的一個(gè)交點(diǎn),且滿足|PF1|=2|PF2|,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
2
,過F2的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與y軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廈門外國語學(xué)校模擬文)(14分)

已知雙曲線的方程為,離心率為2,過點(diǎn)的直線交雙曲線于不同兩點(diǎn)、,為坐標(biāo)原點(diǎn).

   (Ⅰ)若直線的傾斜角為, 且,求;

   (Ⅱ)若雙曲線的一個(gè)焦點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廈門外國語學(xué)校模擬文)(14分)

已知雙曲線的方程為,離心率為2,過點(diǎn)的直線交雙曲線于不同兩點(diǎn)、為坐標(biāo)原點(diǎn).

   (Ⅰ)若直線的傾斜角為, 且,求;

   (Ⅱ)若雙曲線的一個(gè)焦點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省西工大附中2010屆高三第九次適應(yīng)性訓(xùn)練(理) 題型:解答題

 已知雙曲線 的右焦點(diǎn)是,右頂點(diǎn)是,虛軸的上端點(diǎn)是,且,.

(1)求雙曲線的方程;

(2)過點(diǎn)的直線交雙曲線于、兩點(diǎn),交軸于點(diǎn)(點(diǎn)與雙曲線的頂點(diǎn)不重合).當(dāng),且時(shí),求點(diǎn)的坐標(biāo).

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案