【題目】設(shè),函數(shù).

(1)求的單調(diào)遞增區(qū)間;

(2)設(shè),問(wèn)是否存在極值,若存在,請(qǐng)求出極值,若不存在,請(qǐng)說(shuō)明理由;

(3)設(shè)是函數(shù)圖象上任意不同的兩點(diǎn),線段的中點(diǎn)為,直線的斜率為,證明:.

【答案】(1)當(dāng)時(shí), 的單調(diào)遞增區(qū)間為;當(dāng)時(shí), 的單調(diào)遞增區(qū)間為

(2)時(shí), 無(wú)極值; , 有極大值,無(wú)極小值.(3)見解析.

【解析】試題分析:

本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用以及不等式的證明。(1求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷求解。(2由題意得,求導(dǎo)數(shù)后根據(jù)函數(shù)的單調(diào)性求極值即可。(3由題意要證,即證,即證,即證,令, ,故只需證,構(gòu)造函數(shù)根據(jù)單調(diào)性證明即可。

試題解析:

1解:函數(shù)的定義域?yàn)?/span>上,

由題意得

①當(dāng)時(shí),則恒成立, 上單調(diào)遞增。

②當(dāng)時(shí),由,得

的單調(diào)遞增區(qū)間為。

綜上可得,當(dāng)時(shí), 的單調(diào)遞增區(qū)間為;當(dāng)時(shí), 的單調(diào)遞增區(qū)間為

(2)由題意得,

當(dāng)時(shí),恒有, 單調(diào)遞增,故無(wú)極值;

當(dāng)時(shí),令,得

當(dāng), , 單調(diào)遞增;

當(dāng), 單調(diào)遞減.

∴當(dāng)時(shí), 有極大值,且極大值為,無(wú)極小值。

綜上所述,當(dāng)時(shí), 無(wú)極值;當(dāng) 有極大值,無(wú)極小值.

(3)證明:由題意得

。

要證,即證,

設(shè),

即證,

即證

設(shè),只需證

即證,

設(shè),

上單調(diào)遞增,

因此,

成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018河南南陽(yáng)市一中上學(xué)期第三次月考已知點(diǎn)為坐標(biāo)原點(diǎn), 是橢圓上的兩個(gè)動(dòng)點(diǎn),滿足直線與直線關(guān)于直線對(duì)稱.

I)證明直線的斜率為定值,并求出這個(gè)定值;

II)求的面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , .

(1)在平面內(nèi)找一點(diǎn),使得直線平面,并說(shuō)明理由;

(2)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,且橢圓經(jīng)過(guò)點(diǎn),已知點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn), 關(guān)于軸對(duì)稱.

(1)求的方程;

(2)證明: 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面, 中點(diǎn).

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中, ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案