如果直線x+y+m=0與圓x2+y2=2交于相異兩點A、B,O是坐標原點,,那么實數(shù)m的取值范圍是( )
A.
B.
C.
D.(-2,2)
【答案】分析:根據(jù)直線與圓交于相異的兩點可推斷出圓心到直線的距離小于半徑,同時根據(jù)推斷出故的夾角為銳角.利用直線的斜率可知直線與x的負半軸的夾角為45度,當的夾角為直角時,可求得原點到直線的距離,進而可求得d的范圍,過原點作一直線與x+y+m=0垂直,求得焦點坐標,則可表示圓心到直線的距離的表達式,進而根據(jù)d范圍確定m的范圍.
解答:解:∵直線x+y+m=0與圓x2+y2=2交于相異兩點A、B,
∴O點到直線x+y+m=0的距離 d<,
又∵,
由平行四邊形可知,夾角為鈍角的鄰邊所 對的對角線比夾角為銳角的鄰邊所對的對角線短,故的夾角為銳角.
又∵直線x+y+m=0的斜率為-1,即直線與x的負半軸的夾角為45度,當的夾角為直角時,直線與圓交于(-,0)、(0,-),此時原點與直線的距離為1,
故d>1 即1<d<,
過原點作一直線與x+y+m=0垂直,即y=x,兩直線交點為(-,-) 則d=
綜上有:-2<m<-<m<2
故選C
點評:本題主要考查了直線與圓相交的性質(zhì).考查了學(xué)生數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸思想的運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4(x-1),橢圓C1的左焦點及左準線與拋物線C的焦點F和準線l分別重合.
(1)設(shè)B是橢圓C1短軸的一個端點,線段BF的中點為P,求點P的軌跡C2的方程;
(2)如果直線x+y=m與曲線C2相交于不同兩點M、N,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線x+y+m=0與圓x2+y2=2交于相異兩點A、B,O是坐標原點,|
OA
+
OB
|>|
OA
-
OB
|
,那么實數(shù)m的取值范圍是( 。
A、(-
2
,
2
)
B、(
2
,2)
C、(-2,-
2
)∪(
2
,2)
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=4(x-1),橢圓C1的左焦點及左準線與拋物線C的焦點F和準線l分別重合.
(1)設(shè)B是橢圓C1短軸的一個端點,線段BF的中點為P,求點P的軌跡C2的方程;
(2)如果直線x+y=m與曲線C2相交于不同兩點M、N,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習數(shù)學(xué):8.4 直線與圓錐曲線的位置關(guān)系(解析版) 題型:解答題

已知拋物線C:y2=4(x-1),橢圓C1的左焦點及左準線與拋物線C的焦點F和準線l分別重合.
(1)設(shè)B是橢圓C1短軸的一個端點,線段BF的中點為P,求點P的軌跡C2的方程;
(2)如果直線x+y=m與曲線C2相交于不同兩點M、N,求m的取值范圍.

查看答案和解析>>

同步練習冊答案