已知全集為R,集合A={x|2x≥1},B={x|x2-6x+8≤0},則A∩∁RB=( 。
A、{x|x≤0}
B、R
C、{x|0≤x<2,或x>4}
D、{x|0<x≤2,或x≥4}
考點:交、并、補集的混合運算
專題:集合
分析:解指數(shù)不等式求得A,解一元二次不等式求得B,再根據(jù)補集的定義求得∁RB,再利用兩個集合的交集的定義求得A∩∁RB.
解答: 解:∵集合A={x|2x≥1}={x|x≥0},B={x|x2-6x+8≤0}={x|2≤x≤4},
∴∁RB={x|x<2,或x>4}
則A∩∁RB=[0,2)∪(4,+∞),
故選:C.
點評:本題主要考查指數(shù)不等式、一元二次不等式的解法,集合的補集、兩個集合的交集的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ex在(4,y0)處的切線與直線ax+y+1=0垂直,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解我校今年新入學(xué)的高一A班學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知高一A班學(xué)生人數(shù)為48人,圖中從左到右的前3個小組的頻率之比為1:2:3,則第2小組的頻數(shù)為( 。
A、16B、14C、12D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
π
2
<a<π,sinα=
4
5
,則
sin2α+sin2α
cos2α+cos2α
的值為( 。
A、8B、10C、-4D、-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=1,BC=2,B=60°,則AC=(  )
A、
5+2
3
B、
7
C、
5-2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)對兩所高中學(xué)校進行學(xué)生體質(zhì)狀況抽測,甲校有學(xué)生800人,乙校有學(xué)生500人,現(xiàn)用分層抽樣的方法在這1300名學(xué)生中抽取一個樣本.已知在甲校抽取了48人,則在乙校應(yīng)抽取學(xué)生人數(shù)為(  )
A、48B、36C、30D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-2y-5=0關(guān)于直線ax+by+c-1=0(b>0,c>0)對稱,則
4
b
+
1
c
的最小值為(  )
A、9B、8C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(3,
3
),O是坐標(biāo)原點,點P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
OP
OA
上的投影的最大值為( 。
A、
3
B、3
C、2
3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+1(a∈R是常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的圖象在為p(1,f(1))處的切線L方程;
(Ⅱ)證明函數(shù)y=f(x)(x≠1)的圖象在切線L下方.

查看答案和解析>>

同步練習(xí)冊答案