【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
【答案】(1) ;(2) .
【解析】試題分析:(1)設(shè)等差數(shù)列的公差為,由成等比數(shù)列,可得,化簡(jiǎn)得,又,所以,從而.;(2)結(jié)合(1)可得,利用錯(cuò)位相減法結(jié)合等比數(shù)列的求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列的公差為,因?yàn)?/span>成等比數(shù)列,
所以,即,
化簡(jiǎn)得,
又,所以,從而.
(2)因?yàn)?/span>,
所以,
所以,
以上兩個(gè)等式相減得,
化簡(jiǎn)得.
【 方法點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫(xiě)出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視人民網(wǎng)報(bào)道:2019年7月15日,平頂山市文物管理局有關(guān)人士表示,郟縣北大街古墓群搶救性發(fā)掘工作結(jié)束,共發(fā)現(xiàn)古墓539座,已發(fā)掘墓葬93座。該墓地是一處大型古墓群,在已發(fā)掘的93座墓葬中,有戰(zhàn)國(guó)時(shí)期墓葬32座、兩漢時(shí)期墓葬56座、唐墓2座、宋墓3座。生物體死亡后,它機(jī)體內(nèi)原有的碳14會(huì)按確定的規(guī)律衰減,大約每經(jīng)過(guò)5730年衰減為原來(lái)的一半,這個(gè)時(shí)間稱為“半衰期”.檢測(cè)一墓葬女尸出土?xí)r碳14的殘余量約占原始含量的79%,則可推斷為該墓葬屬于( )時(shí)期(輔助數(shù)據(jù):)
參考時(shí)間軸:
A.戰(zhàn)國(guó)B.兩漢C.唐朝D.宋朝
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.由直線上離圓心最近的點(diǎn)向圓引切線,切點(diǎn)為,則線段的長(zhǎng)為__________.
【答案】
【解析】圓心到直線的距離:,
結(jié)合幾何關(guān)系可得線段的長(zhǎng)度為.
【題型】填空題
【結(jié)束】
16
【題目】設(shè)是兩個(gè)非零平面向量,則有:
①若,則
②若,則
③若,則存在實(shí)數(shù),使得
④若存在實(shí)數(shù),使得,則或四個(gè)命題中真命題的序號(hào)為 __________.(填寫(xiě)所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時(shí)腰的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴當(dāng)時(shí),求函數(shù)的極值;
⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)城市空氣污染指數(shù)范圍及相應(yīng)的空氣質(zhì)量類別見(jiàn)下表:
空氣污染指數(shù) | 空氣質(zhì)量 | 空氣污染指數(shù) | 空氣質(zhì)量 | |
0--50 | 優(yōu) | 201--250 | 中度污染 | |
51--100 | 良 | 251--300 | 中度重污染 | |
101--150 | 輕微污染 | >300 | 重污染 | |
151----200 | 輕度污染 |
我們把某天的空氣污染指數(shù)在0-100時(shí)稱作A類天,101--200時(shí)稱作B類天,大于200時(shí)稱作C類天.下圖是某市2014年全年監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取的18天數(shù)據(jù)作為樣本,其莖葉圖如下:(百位為莖,十.個(gè)位為葉)
(1)從這18天中任取3天,求至少含2個(gè)A類天的概率;
(2)從這18天中任取3天,記X是達(dá)到A類或B類天的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2﹣2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫(xiě)出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4-5:不等式選講)
設(shè)函數(shù)
(1)若a=1,試求的解集;
(2)若a>0,且關(guān)于x的不等式有解,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com