【題目】四棱錐中,底面是菱形,.
(1)求證:;
(2)若是的中點,求點到平面的距離.
【答案】(1)見證明;(2)
【解析】
(1)要證轉(zhuǎn)證平面,即證;
(2) 由(1)可知,平面.可得平面平面設(shè)點到平面的距離為,則由于,得點到平面的距離為.
(1)證明:由于四邊形是菱形,,所以是正三角形.
設(shè)的中點為,連接,如圖所示,則
又,所以.
又相交于,所以平面
又平面,所以.
(2)由(1)可知,平面.可得
解:由(1)可知,平面.
又,所以平面.
又平面,所以平面平面
設(shè)點到平面的距離為,則由于,得點到平面的距離為.
由于平面,所以兩點到平面的距離均為.
所以點到直線的距離就是.設(shè)的中心為,則平面.
,在中,
在中,,所以.
由,得點到直線的距離為,即,得
所以點到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,PA=3,PB=PC=,AB=AC=2,BC=.
(1)求二面角B—AP—C大小的余弦值;
(2)求點P到底面ABC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,,為橢圓的左右頂點,為橢圓上不同于.的動點,直線與直線,分別交于,兩點,若,則過,,三點的圓必過軸上不同于點的定點,其坐標(biāo)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點.
(1)求證:平面ABCD;
(2)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,且和直線相切,動圓圓心形成的軌跡是曲線,過點的直線與曲線交于兩個不同的點.
(1)求曲線的方程;
(2)在曲線上是否存在定點,使得以為直徑的圓恒過點?若存在,求出點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N為AD的中點.
(1)求異面直線PB與CD所成角的余弦值;
(2)點M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為直角梯形,,,四邊形為矩形,平面平面,,,點為的中點,點為的中點.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中
①若空間向量,,則是的充要條件;
②若是的必要不充分條件,則實數(shù)的取值范圍為;
③已知,為兩個不同平面,,為兩條直線,,,,,則“”是“”的充要條件;
④已知向量為平面的法向量,為直線的方向向量,則是的充要條件.
其中正確命題的序號有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com