【題目】設(shè)函數(shù),

(1)若曲線在點(diǎn)處的切線與軸平行,求

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

【答案】(Ⅰ)a=e;(Ⅱ)a的最大值為2e;

【解析】

(Ⅰ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)條件列方程解得a;(Ⅱ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點(diǎn)與1大小分類討論,根據(jù)函數(shù)單調(diào)性確定函數(shù)最小值,最后根據(jù)最小值大于零,解得a的取值范圍,即得最大值.

(Ⅰ)∵,∴f'x=exa,∴f'1=ea,

由題設(shè)知f'1=0,即ea=0,解得a=e

經(jīng)驗(yàn)證a=e滿足題意.

(Ⅱ)令f'x=0,即ex=a,則x=lna

1)當(dāng)lna1時(shí),即0ae

對(duì)于任意x∈(-∞,lna)有f'x)<0,故fx)在(-∞,lna)單調(diào)遞減;

對(duì)于任意x∈(lna,1)有f'x)>0,故fx)在(lna,1)單調(diào)遞增,

因此當(dāng)x=lna時(shí),fx)有最小值為成立.所以0ae,

2)當(dāng)lna≥1時(shí),即ae對(duì)于任意x∈(-∞,1)有f'x)<0,

fx)在(-∞,1)單調(diào)遞減,所以fx)>f1).

因?yàn)?/span>fx)的圖象恒在x軸上方,所以f1)≥0,即a≤2e,

綜上,a的取值范圍為(0,2e],所以a的最大值為2e

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過(guò)對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2A3,A4A5,A6和4名女志愿者B1,B2,B3B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。

(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)Ax1,y1)和點(diǎn)Bx2y2)是單位圓x2+y2=1上兩點(diǎn),|AB|=1,則∠AOB=______;|y1+2|+|y2+2|的最大值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有下列四個(gè)命題:

:若,則

:若,則;

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. C. ,D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四棱錐可繞著任意旋轉(zhuǎn),平面.,,則正四棱錐在面內(nèi)的投影面積的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

(1)證明:平面平面

(2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一長(zhǎng)為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動(dòng)場(chǎng)地,如圖所示,其中是足球場(chǎng)地邊線所在的直線,球門處于所在直線的正中間位置,足球運(yùn)動(dòng)員(將其看做點(diǎn))在運(yùn)動(dòng)場(chǎng)上觀察球門的角稱為視角.

(1)當(dāng)運(yùn)動(dòng)員帶球沿著邊線奔跑時(shí),設(shè)到底線的距離為碼,試求當(dāng)為何值時(shí)最大;

(2)理論研究和實(shí)踐經(jīng)驗(yàn)表明:張角越大,射門命中率就越大.現(xiàn)假定運(yùn)動(dòng)員在球場(chǎng)都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動(dòng)到視角最大的位置即為最佳射門點(diǎn),以的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場(chǎng)區(qū)域內(nèi)射門到球門的最佳射門點(diǎn)的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案