在極坐標(biāo)系中,方程ρ=2cosθ的圖形是( 。
A、圓B、橢圓C、雙曲線D、拋物線
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,結(jié)合圓的標(biāo)準(zhǔn)方程形式,可得結(jié)論.
解答: 解:方程ρ=2cosθ 即 ρ2=2ρcosθ,化為直角坐標(biāo)方程為 (x-1)2+y2=1,表示一個圓,
故選:A.
點評:本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(x+
π
3
),x∈[0,2π]的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲袋中有1個黃球和2個紅球,乙袋中有2個黃球和2個紅球,現(xiàn)隨機地從甲袋中取出兩個球放入乙袋中,然后從乙袋中隨機取出1個球,則從乙袋中取出紅球的概率為( 。
A、
1
3
B、
1
2
C、
5
9
D、
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個命題與正整數(shù)有關(guān),若當(dāng)n=k(k∈N*)時該命題成立,那么推得n=k+1時該命題成立,現(xiàn)已知當(dāng)n=8時,該命題不成立,那么可推得(  )
A、當(dāng)n=7時,該命題成立
B、當(dāng)n=7時,該命題不成立
C、當(dāng)n=9時,該命題成立
D、當(dāng)n=9時,該命題不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若已知△ABC的周長為9,且a:b:c=3:2:4,則cosC的值為(  )
A、-
1
4
B、
1
4
C、-
2
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的焦點為(0,6),(0,-6),且經(jīng)過點A(-5,6),則其標(biāo)準(zhǔn)方程為( 。
A、
x2
16
-
y2
20
=1
B、
y2
16
-
x2
20
=1
C、
y2
20
-
x2
16
=1
D、
y2
45
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個不重合的平面,給定下列四個命題:
①若m⊥n,n?α,則m⊥α;②若a⊥α,α?β,則α⊥β;③若m⊥α,n⊥α,則m∥n; ④若m?α,n?β,α∥β則m∥n.其中真命題的是( 。
A、①和②B、②和③
C、③和④D、②和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,若a1=1,an+1=3Sn(n∈N*),則a10=( 。
A、3×48
B、3×48+1
C、49
D、49+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在程序框圖中處理框的功能表示( 。
A、輸入信息
B、輸出信息
C、賦值,計算
D、一個算法的起始和結(jié)束

查看答案和解析>>

同步練習(xí)冊答案