17.若cos($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,則sin2(θ-$\frac{π}{6}$)=$\frac{2}{3}$.

分析 利用誘導公式和同角三角函數(shù)關(guān)系解答即可.

解答 解:∵cos($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,
∴cos(θ-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∴sin2(θ-$\frac{π}{6}$)=1-cos2(θ-$\frac{π}{6}$)=1-($\frac{\sqrt{3}}{3}$)2=$\frac{2}{3}$.
故答案是:$\frac{2}{3}$.

點評 本題主要考察了同角三角函數(shù)關(guān)系式和誘導公式的應用,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$的解集是( 。
A.[-4,1]B.[-1,4]C.[-4,1)D.[-1,1)∪(1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.不等式|x|+|x-2|<3的解集為$(-\frac{1}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.等差數(shù)列{an}中,已知a2=3,a7=13.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列前8項和S8的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知冪函數(shù)y=f(x)的圖象過點(8,m)和(9,3).
(1)求m的值;
(2)若函數(shù)g(x)=logaf(x)在區(qū)間[16,36]上的最大值比最小值大1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若集合A={x|x2-2x>0,x∈R},B={x||x+1|<2,x∈R},則A∩B=(-3,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x+1|+|x-2|
(1)求不等式f(x)≤5的解集;
(2)若關(guān)于x的不等式f(x)<|a-$\frac{1}{2}$|的解集不是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)角α的終邊經(jīng)過點(-6t,-8t) (t≠0),則sin α-cos α的值是( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.±$\frac{1}{5}$D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若A=60°,B=75°,c=2,則a=$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案