求矩陣M=的特征值和特征向量.

 

t0,屬于λ1=7的特征向量為

t0,所以屬于λ2=-2的特征向量為

【解析】特征多項式λ2-5λ-14=(λ-7)(λ+2),

(λ-7)(λ+2)=0可得:λ1=7,λ2=-2.

可得2x-y=0,

(x,y)=(t,2t).

t0,屬于λ1=7的特征向量為,

可得x+4y=0,

(x,y)=(4t,-t),

t0,所以屬于λ2=-2的特征向量為.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十三第五章第四節(jié)練習卷(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的各項均為正數(shù),公比為q,n項和為Sn.若對?nN*,S2n<3Sn,q的取值范圍是(  )

(A)(0,1](B)(0,2)(C)[1,2)(D)(0,)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十第十章第七節(jié)練習卷(解析版) 題型:解答題

某校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分.初賽采用選手選一題答一題的方式進行,每位選手最多有5次選題答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰.已知選手甲答題連續(xù)兩次答錯的概率為.(已知甲回答每個問題的正確率相同,并且相互之間沒有影響.)

(1)求選手甲回答一個問題的正確率.

(2)求選手甲可進入決賽的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十四選修4-2第一節(jié)練習卷(解析版) 題型:解答題

已知2×2矩陣M=,矩陣M對應(yīng)的變換將點(2,1)變換成點(4,-1),求矩陣M將圓x2+y2=1變換后的曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十六選修4-2第三節(jié)練習卷(解析版) 題型:解答題

對任意實數(shù)x,矩陣總存在特征向量,m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十八選修4-4第二節(jié)練習卷(解析版) 題型:解答題

求直線(t為參數(shù))被圓(α為參數(shù))截得的弦長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十五選修4-2第二節(jié)練習卷(解析版) 題型:解答題

已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關(guān)于x軸的反射變換,再將所得圖形繞原點逆時針旋轉(zhuǎn)90°.

(1)分別求兩次變換所對應(yīng)的矩陣M1,M2.

(2)求△ABC在兩次連續(xù)的變換作用下所得到的△A'B'C'的面積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十二第十章第九節(jié)練習卷(解析版) 題型:填空題

拋擲兩枚骰子,至少有一個4點或5點出現(xiàn)時,就說這次試驗成功,則在10次試驗中,成功次數(shù)X的期望是    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十一第十章第八節(jié)練習卷(解析版) 題型:解答題

現(xiàn)有甲、乙兩個靶,某射手向甲靶射擊一次,命中的概率為,命中得1,沒有命中得0;向乙靶射擊兩次,每次命中的概率為,每命中一次得2,沒有命中得0.該射手每次射擊的結(jié)果相互獨立,假設(shè)該射手完成以上三次射擊.

(1)求該射手恰好命中一次的概率.

(2)求該射手的總得分X的分布列.

 

查看答案和解析>>

同步練習冊答案