某單位計劃建造如圖所示的三個相同的矩形飼養(yǎng)場,現(xiàn)有總長為1的圍墻材料,則每個矩形的長寬之比為
 
時,圍出的飼養(yǎng)場的總面積最大.
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:設(shè)矩形的長為x,寬為y,由題意可得4x+6y=1,總面積S=3xy=
1
8
•4x•6y,由基本不等式可得.
解答: 解:設(shè)矩形的長為x,寬為y,
由題意可得4x+6y=1,
總面積S=3xy=
1
8
•4x•6y
1
8
4x+6y
2
2=
1
32

當(dāng)且僅當(dāng)4x=6y=
1
2
,即x=
1
8
且y=
1
12
時取等號,
∴每個矩形的長寬之比為
1
8
1
12
=3:2
故答案為:3:2
點評:本題考查基本不等式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x-cos2x+1,且x∈[0,2π].
(1)求f(x)的值域;         
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(a2-3a+1)•ax是指數(shù)函數(shù),則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
,x≥0
(
1
2
)x,x<0
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體P-ABC,∠PAB=∠BAC=∠PAC=60°,|
AB
|=1,|
AC
|=2,|
AP
|=3,則|
AB
+
AC
+
AP
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,直線3x+4y+c=0與圓x2+y2=4相交于A,B兩點,且弦AB的長為2
3
,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
3-k
+
y2
2+k
=0表示焦點在x軸上的橢圓,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于△ABC,有如下四個命題:
①若sin2A=sin2B,則△ABC為等腰三角形,
②若sinB=cosA,則△ABC是直角三角形,
③若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC為正三角形,
④若sin2A+sin2B+sin2C<2,則△ABC為鈍角三角形,
⑤若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①若
a
b
=0,則
a
=
0
b
=
0
;  
②若不平行的兩個非零向量
a
,
b
滿足|
a
|=|
b
|,則(
a
+
b
)•(
a
-
b
)=0;   
③若
a
b
平行,則|
a
b
|=|
a
|•|
b
|;
④若
a
b
,
b
c
,則
a
c

⑤對于非零向量
a
,
b
,
c
有(
a
b
c
=
a
b
c

⑥已知|
a
|=1,|
b
|=2,|
a
-
b
|=
3
,則
a
b
的夾角為60°
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案