已知函數(shù)f(x)=(logax)2-logax-2(a>0,a≠1)
(Ⅰ)當(dāng)a=2時(shí),求解關(guān)x的不等式f(
1+x1-x
)>0
(Ⅱ)若函數(shù)f(x)在[2,4]的最小值為4,求實(shí)數(shù)a的值.
分析:(Ⅰ)不等式即  (log2
1+x
1-x
)
2
-log2
1+x
1-x
-2>0,解一元二次不等式求得①log2
1+x
1-x
>log24,
或②log2
1+x
1-x
log2
1
2
.分別求得①②的解集,再取并集,即得所求.
(Ⅱ)分a>1和0<a<1兩種情況,利用函數(shù)的單調(diào)性分別求得最小值,再根據(jù)最小值為4,求得a的值.
解答:解:(Ⅰ)∵函數(shù)f(x)=(logax)2-logax-2,故當(dāng)a=2時(shí),f(x)=(log2x)2-log2x-2.
故f(
1+x
1-x
)=(log2
1+x
1-x
)
2
-log2
1+x
1-x
-2,故關(guān)于x的不等式f(
1+x
1-x
)>0,
即  (log2
1+x
1-x
)
2
-log2
1+x
1-x
-2>0.
令t=log2
1+x
1-x
,則不等式即 t2-t+2>0,即 (t-2)(t+1)>0.
解得 t>2,或t<-1,故有 log2
1+x
1-x
>2,或  log2
1+x
1-x
<-1,
即 ①log2
1+x
1-x
>log24,或②log2
1+x
1-x
log2
1
2

解①求得 
1+x
1-x
>4,即
5x-3
x-1
<0
,解得
3
5
<x<1.
解②求得 0<
1+x
1-x
1
2
,即
x+1
x-1
<0
x+1
x-1
+
1
2
>0
,即 
-1<x<1
3x+1
2x-2
>0
,
即 
-1<x<1
x>1 ,或x<-
1
3
,解得-1<x<-
1
3

綜上,不等式的解集為 {x|-1<x<-
1
3
,或
3
5
<x<1}.
(Ⅱ) f(x)=(logax)2-logax-2=(logax-2)(logax+1)=loga(
x
a2
)
•loga(ax).
當(dāng)a>1時(shí),函數(shù) f(x)在[2,4]上增函數(shù),故最小值為f(2)=loga(
2
a2
)
•loga(2a)=4,
化簡可得 (loga2-2)(loga2+1)=4,解得 loga2=3,或 loga2=-2 (舍去),故a=
32

當(dāng)0<a<1時(shí),f(x)=loga(
x
a2
)
•loga(ax) 在[2,4]上增函數(shù),
故最小值為f(2))=loga(
2
a2
)
•loga(2a)=4,解得得 loga2=3(舍去),或 loga2=-2,解得 a=
2
2

綜上,a=
32
,或a=
2
2
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,對(duì)數(shù)不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案