已知函數(shù)f(x)=lnx+
1-x
ax
,其中a
為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>
1
2
+
1
3
+…+
1
n
成立.
(1)∵函數(shù)f(x)=lnx+
1-x
ax
,其中a
為大于零的常數(shù),
f(x)=
1
x
-
1
ax2
=
x-
1
a
x2

∵函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,
∴當(dāng)x≥1時(shí),f(x)≥0恒成立,即
1
a
≤x
(a>0),x∈[1,+∞)恒成立?
1
a
≤[x]min
,(a>0)x∈[1,+∞)?
1
a
≤1
(a>0).
解得a≥1.即為所求的取值范圍.
(2)(i)由(1)可知:當(dāng)a≥1時(shí),f(x)在區(qū)間[1,2]上單調(diào)遞增,
∴當(dāng)x=1時(shí),函數(shù)f(x)取得最小值,且f(1)=0.
(ii)當(dāng)0<a≤
1
2
時(shí),
1
a
≥2
,∴當(dāng)x∈[1,2]時(shí),f(x)≤0,∴函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,
∴當(dāng)x=2時(shí),函數(shù)f(x)取得最小值,且f(2)=ln2-
1
2a

(iii)當(dāng)
1
2
<a<1
時(shí),1<
1
a
<2

令f(x)=0,則x=
1
a

當(dāng)1<x<
1
a
時(shí),f(x)<0;當(dāng)
1
a
<x<2
時(shí),f(x)>0.
∴當(dāng)x=
1
a
時(shí),函數(shù)f(x)取得極小值,因?yàn)樵趨^(qū)間[1,2]內(nèi)只有一個(gè)極小值,所以也即最小值,∴最小值為f(
1
a
)
=1-
1
a
-lna

(3)由(1)可知:令a=1,則函數(shù)f(x)=lnx+
1-x
x
在區(qū)間[1,+∞)上單調(diào)遞增.
再令x=
n+1
n
,f(1+
1
n
)>f(1)
,而f(1+
1
n
)=ln
n+1
n
-
1
n+1
,f(1)=0,
ln(n+1)-lnn>
1
n+1

∴l(xiāng)nn=(ln2-ln1)+(ln3-ln2)+…+[lnn-ln(n-1)]>
1
2
+
1
3
+
+
1
n
,
即lnn>
1
2
+
1
3
+
1
n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案