分析 由題意對已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點($\frac{1}{2}$,1)對稱,即f(x)+f(1-x)=2,即可得到結(jié)論
解答 解:(Ⅰ)函數(shù)的導(dǎo)數(shù)g′(x)=x2-x+3,
g″(x)=2x-1,
由g″(x0)=0得2x0-1=0
解得x0=$\frac{1}{2}$,而f($\frac{1}{2}$)=1,
故函數(shù)g(x)關(guān)于點($\frac{1}{2}$,1)對稱,
(Ⅱ)由(Ⅰ)知g(x)+g(1-x)=2,
故設(shè)$g(\frac{1}{2015})+g(\frac{2}{2015})+g(\frac{3}{2015})+…+g(\frac{2014}{2015})$=m,
則g($\frac{2014}{2015}$)+g($\frac{2013}{2015}$)+…+g($\frac{1}{2015}$)=m,
兩式相加得2×2014=2m,
則m=2014.
故答案為:($\frac{1}{2}$,1),2014.
點評 本題主要考查導(dǎo)數(shù)的基本運算,利用條件求出函數(shù)的對稱中心是解決本題的關(guān)鍵.求和的過程中使用了倒序相加法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{{1+cos{{120}°}}}{2}}$ | B. | ${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$ | ||
C. | cos42°sin12°-sin42°cos12° | D. | $\frac{{tan{{15}°}}}{{1-{{tan}^2}{{15}°}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com