已知分別是雙曲線的左、右焦點,是雙曲線上的一點,若,,構(gòu)成公差為正數(shù)的等差數(shù)列,則的面積為
A.B.C.  D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
已知雙曲線的一個焦點是,且
(1)求雙曲線的方程;
(2)設(shè)經(jīng)過焦點的直線的一個法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點時,求實數(shù)的取值范圍;并證明中點在曲線上.
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點,問是否存在實數(shù),使得為銳角?若存在,請求出的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,離心率.直線:與橢圓C相交于兩點, 且
(1)求橢圓C的方程
(2)點P(,0),A、B為橢圓C上的動點,當(dāng)時,求證:直線AB恒過一個定點.并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知、,橢圓C的方程為,分別為橢圓C的兩個焦點,設(shè)為橢圓C上一點,存在以為圓心的外切、與內(nèi)切
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作斜率為的直線與橢圓C相交于A、B兩點,與軸相交于點D,若
的值;
(Ⅲ)已知真命題:“如果點T()在橢圓上,那么過點T
的橢圓的切線方程為=1.”利用上述結(jié)論,解答下面問題:
已知點Q是直線上的動點,過點Q作橢圓C的兩條切線QM、QN,
MN為切點,問直線MN是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知橢圓的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0),(c>0),過點E的直線與橢圓交于A、B兩點,且F1A//F2B,|F1A|=2|F2B|,
(1)求離心率;
2)求直線AB的斜率;
(3)設(shè)點C與點A關(guān)于標(biāo)標(biāo)原點對稱,直線F2B上有一點H(m,n)(m≠0)在△AF1C的外接圓上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的一個交點,軸,若直線是雙曲線的一條漸近線,則直線的傾斜角所在的區(qū)間可能為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從極點作圓,則各弦中點的軌跡方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,橢圓C:的右焦點為,直線的方程為,點A在直線上,線段AF交橢圓C于點B,若,則直線AF的傾斜角的大小為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過拋物線的焦點,且傾斜角為的直線方程為             (   )
A.B.
C..mD.

查看答案和解析>>

同步練習(xí)冊答案