已知,,圓,一動圓在軸右側與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。
(1)求曲線C的方程;
(2)設曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。
(1);(2)
解析試題分析:(1)設動圓圓心的坐標為(x,y)(x>0),由動圓在y軸右側與y軸相切,同時與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=,得xp=,由此能求出曲線E的標準方程.
(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍
解:(1)設動圓圓心的坐標為(x,y)(x>0)
因為動圓在y軸右側與y軸相切,同時與圓F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化簡整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)(2)依題意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由橢圓定義得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲線E的標準方程為
=1.…(6分)(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3x12+4y12-12=0,3x22+4y22-12=0兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直線AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp=±由題設-<y0< (y0≠0),∴-<-y0<,…(10分)即-<k<(k≠0).…(12分)
考點:曲線方程
點評:本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時要認真審題,注意點差法和等價轉化思想的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的對稱軸為坐標軸,焦點是(0,),(0,),又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓過點,離心率為,左、右焦點分別為、.點為直線上且不在軸上的任意一點,直線和與橢圓的交點分別為、和、,為坐標原點.設直線、的斜率分別為、.
(i)證明:;
(ii)問直線上是否存在點,使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓與軸負半軸交于點,為橢圓第一象限上的點,直線交橢圓于另一點,橢圓左焦點為,連接交于點D。
(1)如果,求橢圓的離心率;
(2)在(1)的條件下,若直線的傾斜角為且△ABC的面積為,求橢圓的標準方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的右焦點為,右準線為,離心率為,點在橢圓上,以為圓心,為半徑的圓與的兩個公共點是.
(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點在同一條直線上,且原點到直線的距離為,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若直線過雙曲線的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點與軸不平行的直線與雙曲線相交于不同的兩點的垂直平分線為,求直線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(,)的圖象恒過定點,橢圓:
()的左,右焦點分別為,,直線經過點且與⊙:相切.
(1)求直線的方程;
(2)若直線經過點并與橢圓在軸上方的交點為,且,求內切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設直線與橢圓在軸上方的一個交點為,是橢圓的右焦點,試探究以為
直徑的圓與以橢圓長軸為直徑的圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標原點,OB垂直AF于B,且OF=3OB.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com