已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.
(1)求橢圓的方程;
(2)過橢圓外一點M(m,0)(m>a)傾斜角為
5
6
π
的直線l交橢圓于C、D兩點,若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
(1)∵圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.
∴F(2,0),B(0,
2
)

∴c=2,b=
2

∴a2=6
∴橢圓的方程為
x2
6
+
y2
2
=1

(2)設(shè)直線l的方程為y=-
3
3
(x-m)(m>
6
)

x2
6
+
y2
2
=1
y=-
3
3
(x-m)
得2x2-2mx+(m2-6)=0
由△=4m2-8(m2-6)>0,可得-2
3
<m<2
3
,
m>
6
,∴
6
<m<2
3
(10分)
設(shè)C(x1,y1),D(x2,y2),則x1+x2=m,x1x2=
m2-6
2

y1y2=[-
3
3
(x1-m)]•[-
3
3
(x2-m)]=
1
3
x1x2-
m
3
(x1+x2)+
m2
3

FC
=(x1-2,y1)
,
FD
=(x2-2,y2)
,
FC
FD
=(x1-2)(x2-2)+y1y2=
4
3
x1x2-
(m+6)
3
(x1x2)+
m2
3
+4
=
2m(m-3)
3

∵點F在圓G的外部,∴
FC
FD
>0
,即
2m(m-3)
3
>0
,
解得m<0或m>3,又
6
<m<2
3
,
3<m<2
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓G:x2+y2-2x-
2
y=0,經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F及上頂點B,過圓外一點(m,0)(m>a)傾斜角為
6
的直線l交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點F及上頂點B,過橢圓外一點(m,0)(ma)且傾斜角為
5
6
π
的直線l交橢圓于C,D兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.過點M(m,0)作傾斜角為
5
6
π
的直線l交橢圓于C、D兩點.
(1)求橢圓的方程;
(2)若點Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實數(shù)m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)三模)已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F及上頂點B.
(1)求橢圓的方程;
(2)過橢圓外一點M(m,0)(m>a)傾斜角為
5
6
π
的直線l交橢圓于C、D兩點,若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓G:x2+y2-2
2
x-2y=0經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F及上頂點B.
(1)求橢圓的方程;
(2)過橢圓外一點M(m,0)(m>a)傾斜角為
2
3
π
的直線l交橢圓于C、D兩點,若點N(3,0)在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案