巳知雙曲線G的中心在坐標原點,實軸在x軸上,離心率為
5
2
,且G上一點到G的兩個焦點的距離之差為12,則雙曲線G的方程為( 。
A、
x2
25
-
y2
9
=1
B、
x2
36
-
y2
9
=1
C、
x2
36
-
y2
9
=-1
D、
x2
36
-
y2
8
=1
考點:雙曲線的標準方程
專題:圓錐曲線的定義、性質與方程
分析:設雙曲線G的方程為
x2
a2
-
y2
b2
=1
,由已知得
e=
c
a
=
5
2
2a=12
c2=a2+b2
,由此能求出雙曲線方程.
解答: 解:設雙曲線G的方程為
x2
a2
-
y2
b2
=1
,
∵離心率為
5
2
,且G上一點到G的兩個焦點的距離之差為12,
e=
c
a
=
5
2
2a=12
c2=a2+b2
,解得a=6,b=3,
∴所求雙曲線方程為
x2
36
-
y2
9
=1

故選:B.
點評:本題考查雙曲線方程的求法,是中檔題,解題時要注意雙曲線性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x3
3
+
mx2+(m+n)x+1
2
的兩個極值點分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內的點,則實數(shù)a的取值范圍為( 。
A、(1,3]
B、(1,3)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=asinx+bcosx(a、b為常數(shù)).
(1)若f(
π
4
)=0,f(π)=
2
,求f(x)的解析式,并化為f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的形式;
(2)若a=2,b=0,g(x)=f(x+
π
6
),寫出g(x)的解析式;當x∈[-
π
6
,
11π
6
]時,按照“五點法”作圖步驟,畫出函數(shù)g(x)的圖象,寫出一個區(qū)間D,D⊆[-
π
6
,
11π
6
],使得在區(qū)間D上,g(x)≥0且g(x)單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個五位自然數(shù)
.
a1a2a3a4a5
;ai∈{0,1,2,3,4,5},i=1,2,3,45,當且僅當a1>a2>a3,a3<a4<a5時稱為“凹數(shù)”(如32014,53134等),則滿足條件的五位自然數(shù)中“凹數(shù)”的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=4,an+1-an=3,試寫出這個數(shù)列的前6項并猜想該數(shù)列的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學預賽成績選出某班的5名學生參加數(shù)學競賽決賽,已知這次預賽他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數(shù)是86.
(Ⅰ)求出x,y的值,且分別求甲、乙兩個班中5名學生成績的方差S12、S22,并根據(jù)結果,你認為應該選派哪一個班的學生參加決賽?
(Ⅱ)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx是偶函數(shù).
(1)求實數(shù)k的值;
(2)若關于x的方程f(x)=m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U=R,集合A={x||x-a|<2},不等式log
1
2
(x2-x-2)<log
1
2
2(x-1)的解集為B,若A⊆∁UB,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

指出下列各組命題中p是q的什么條件?p:m為有理數(shù),q:m為實數(shù)p是q的
 
p:x2-1=0,q:x-1=0p是q的
 
p:內錯角相等,q:兩直線平行p是q的
 

查看答案和解析>>

同步練習冊答案