已知橢圓:的左焦點為,右焦點為.
(Ⅰ)設直線過點且垂直于橢圓的長軸,動直線垂直于點P,線段的垂直平分線交于點M,求點M的軌跡的方程;
(Ⅱ)設為坐標原點,取曲線上不同于的點,以為直徑作圓與相交另外一點,求該圓的面積最小時點的坐標.
(Ⅰ)(Ⅱ).
解析試題分析:(Ⅰ) 利用拋物線的定義“到定點的距離等于到定直線的距離”來求;(Ⅱ)直線與拋物線相交,聯(lián)立消元,設點代入化簡,利用基本不等式求最值.
試題解析:(I)在線段的垂直平分線上,∴| MP | =" |" M |
故動點M到定直線的距離等于它到定點的距離
因此動點M的軌跡是以為準線,為焦點的拋物線,
所以點M的軌跡的方程為
(II)因為以OS為直徑的圓與相交于點R,
所以,即
設,,則
,,,
所以,即
∵,,∴
故,當且僅當,即時等號成立
當時,,圓的直徑,
這時點S的坐標為.
考點:拋物線的定義,向量的坐標運算,基本不等式,坐標表示等,考查了學生的綜合化簡計算能力.
科目:高中數(shù)學 來源: 題型:解答題
設橢圓:的左、右焦點分別是、,下頂點為,線段的中點為(為坐標原點),如圖.若拋物線:與軸的交點為,且經(jīng)過、兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,為拋物線上的一動點,過點作拋物線的切線交橢圓于、兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點和上下兩個頂點是一個邊長為2且∠F1B1F2為的菱形的四個頂點.
(1)求橢圓的方程;
(2)過右焦點F2 ,斜率為()的直線與橢圓相交于兩點,A為橢圓的右頂點,直線、分別交直線于點、,線段的中點為,記直線的斜率為.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線:,使得與的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com