已知函數(shù)是上的增函數(shù),,.
(Ⅰ)若,求證:;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并證明你的結(jié)論.
(Ⅰ)利用函數(shù)的單調(diào)性,得,. .
兩式相加,得.
(Ⅱ)逆命題:若,則.用反證法證明
解析試題分析:(Ⅰ)因為,所以.
由于函數(shù)是上的增函數(shù),
所以.
同理, .
兩式相加,得. 6分
(Ⅱ)逆命題:
若,則.
用反證法證明
假設(shè),那么
所以.
這與矛盾.故只有,逆命題得證. 12分
考點:本題主要考查函數(shù)的單調(diào)性,反證法,命題的四種形式,不等式證明。
點評:中檔題,涉及函數(shù)的不等式,往往要利用函數(shù)的單調(diào)性基本導(dǎo)數(shù)的性質(zhì)。本題2利用反證法證明不等式要注意遵循反證法證題步驟。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知函數(shù)y=ln(-x2+x-a)的定義域為(-2,3),求實數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()是偶函數(shù)
(1)求的值;
(2)設(shè),若函數(shù)與的圖像有且只有一個公共點,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當(dāng)a=時,方程f(1-x)=有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為,當(dāng)時,,且對于任意的,恒有成立.
(1)求;
(2)證明:函數(shù)在上單調(diào)遞增;
(3)當(dāng)時,
①解不等式;
②求函數(shù)在上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com