【題目】已知橢圓的右焦點(diǎn)為,離心率為。

1)求橢圓的標(biāo)準(zhǔn)方程;

2是橢圓上不同的三點(diǎn),若直線的斜率之積為,試問從兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由。

【答案】(1)(2)兩點(diǎn)的橫坐標(biāo)之和為0,詳見解析

【解析】

1)先由題中條件,得到,再由離心率求出,得到,進(jìn)而可得橢圓方程;

2)設(shè)三點(diǎn)坐標(biāo)分別為,直線的斜率分別為,得到直線的方程為:,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理表示出,再結(jié)合,即可得到結(jié)果.

1)由橢圓的右焦點(diǎn),

又離心率

所以橢圓的標(biāo)準(zhǔn)方程為:

2兩點(diǎn)的橫坐標(biāo)之和為0,理由如下

設(shè)三點(diǎn)坐標(biāo)分別為,直線的斜率分別為,

則直線的方程為:,

由方程組,消去得:

,

,同理可得:,

,即,

從而,

兩點(diǎn)的橫坐標(biāo)之和為常數(shù)零

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若.

(。┣蠛瘮(shù)的極小值;

(ⅱ)求函數(shù)在點(diǎn)處的切線方程.

(Ⅱ)若函數(shù)上有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C,其焦點(diǎn)到準(zhǔn)線的距離為2,直線l與拋物線C交于A,B兩點(diǎn),過AB分別作拋物線C的切線,交于點(diǎn)M

(Ⅰ)求拋物線C的方程

(Ⅱ)若,求三角形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)||,實(shí)數(shù)mn滿足0mn,且f(m)f(n),若f(x)[m2,n]上的最大值為2,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過4萬(wàn)盧布的顧客定義為足球迷”,消費(fèi)金額不超過4萬(wàn)盧布的顧客定義為“非足球迷”。

消費(fèi)金額/萬(wàn)盧布

合計(jì)

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;

(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).共生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(jià)(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

90

84

83

80

75

68

已知.

(1)已知變量,只有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回方程

(2)用表示用(Ⅱ)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的差的絕對(duì)值時(shí),則將售數(shù)數(shù)稱為一個(gè)好數(shù)據(jù)”.現(xiàn)從6小銷售數(shù)據(jù)中任取2個(gè);求好數(shù)據(jù)至少有一個(gè)的概率.

(參考公式:線性回歸方程中的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義為常數(shù)),若 .下述四個(gè)命題:

不存在極值;

②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則 ;

③若 上是減函數(shù),則實(shí)數(shù) 的取值范圍是 ;

④若 ,則在的圖象上存在兩點(diǎn),使得在這兩點(diǎn)處的切線互相垂直

A. ①③④B. ②③④C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:

類行業(yè):85,8277,7883,87

類行業(yè):7667,80,8579,81;

類行業(yè):87,8976,8675,84,90,82

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案