精英家教網 > 高中數學 > 題目詳情

【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ)設直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求 的最大值及取得最大值時m的值.

【答案】解:(I) …①
矩形ABCD面積為8,即2a2b=8…②
由①②解得:a=2,b=1,
∴橢圓M的標準方程是
(II)
由△=64m2﹣20(4m2﹣4)>0得
設P(x1 , y1),Q(x2 , y2),則

當l過A點時,m=1,當l過C點時,m=﹣1.
①當 時,有 ,
其中t=m+3,由此知當 ,即 時, 取得最大值
②由對稱性,可知若 ,則當 時, 取得最大值
③當﹣1≤m≤1時, , ,
由此知,當m=0時, 取得最大值
綜上可知,當 或m=0時, 取得最大值
【解析】(Ⅰ)通過橢圓的離心率,矩形的面積公式,直接求出a,b,然后求橢圓M的標準方程;(Ⅱ) 通過 ,利用韋達定理求出|PQ|的表達式,通過判別式推出的m的范圍,①當 時,求出 取得最大值 .利用由對稱性,推出 , 取得最大值 .③當﹣1≤m≤1時, 取得最大值 .求 的最大值及取得最大值時m的值.
【考點精析】關于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:,焦點在y軸:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知 分別為等差數列和等比數列, , 的前項和為.函數的導函數是,有,且是函數的零點.

(1)求的值;

(2)若數列公差為,且點,當時所有點都在指數函數的圖象上.

請你求出解析式,并證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數, 為參加測試的總人數.現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:

測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

(1)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;

(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;

(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度(.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 的定義域為(
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知曲線,曲線, 是平面上一點,若存在過點的直線與都有公共點,則稱為“型點”.

(1)證明: 的左焦點是“型點”;

(2)設直線有公共點,求證: ,進而證明原點不是型點”;

(3)求證: 內的點都不是型點”.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為坐標原點,雙曲線C: =1(a>0,b>0)的左焦點為F(﹣c,0)(c>0),以OF為直徑的圓交雙曲線C的漸近線于A,B,O三點,且( + =0,若關于x的方程ax2+bx﹣c=0的兩個實數根分別為x1和x2 , 則以|x1|,|x2|,2為邊長的三角形的形狀是(
A.鈍角三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小滿分13分)如圖,三棱柱中,,

(1)證明:;

(2),求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設ω>0,函數y=sin(ωx+ )+2的圖象向右平移 個單位后與原圖象重合,則ω的最小值是(
A.
B.
C.
D.3

查看答案和解析>>

同步練習冊答案