已知頂點是坐標原點,對稱軸是軸的拋物線經過點
(1)求拋物線的標準方程;
(2)直線過定點,斜率為,當為何值時,直線與拋物線有公共點?

(1) ;(2) .

解析試題分析:(1)頂點是坐標原點,對稱軸是軸的拋物線經過第四象限點,因此該拋物線開口向右,可設其標準方程為,利用拋物線過點可求出而得方程.
(2)點斜式寫出直線的方程,當方程組有解時,直線與拋物線有公共點,故可在消去后利一元二次方程根的判別式求出的取值范圍.
試題解析:解:(1)依題意設拋物線的方程為                  2分
點的坐標代入方程得
解得                                  5分
∴拋物線的標準方程                         6分
(2)直線的方程為,即                7分
解聯(lián)立方程組,消去,得
,化簡得              9分
①當,由①得代入,得
這時直線與拋物線有一個公共點                     11分
②當,依題意得
解得                         13分
綜合①②,當時直線與拋物線有公共點                 14分
考點:1、拋物線的標準方程;2、直線與拋物線位置關系的判斷;3、直線的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線(其中).
(1)若定點到雙曲線上的點的最近距離為,求的值;
(2)若過雙曲線的左焦點,作傾斜角為的直線交雙曲線于、兩點,其中是雙曲線的右焦點.求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在原點的橢圓C:的一個焦點為F1(0,3),M(x,4)(x>0)為橢圓C上一點,△MOF1的面積為.
(1) 求橢圓C的方程;
(2) 是否存在平行于OM的直線l,使得直線l與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求以橢圓的焦點為焦點,且過點的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 (其中)與橢圓 相交于兩點,且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點中點,求直線的方程;
(2)設拋物線的焦點為,當時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設,過點的直線與曲線交于,兩點,為坐標原點,若為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓上的點到其兩焦點距離之和為,且過點
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知、為橢圓的左、右焦點,且點在橢圓上.
(1)求橢圓的方程;
(2)過的直線交橢圓兩點,則的內切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案