分析 (1)由∠BAD=90°,AD=2,BD=$2\sqrt{2}$.可得AB=2.于是矩形ABCD是正方形,可得BD⊥AC.利用線面垂直的性質(zhì)可得:PA⊥BD,即可證明:BD⊥平面PAC.
(2)由PA⊥平面ABCD,CD⊥AD,利用三垂線定理可得:CD⊥PD,于是∠PDA是二面角P-CD-B的平面角.利用直角三角形的邊角關系即可得出.
解答 (1)證明:∵∠BAD=90°,AD=2,BD=$2\sqrt{2}$.∴$AB=\sqrt{B{D}^{2}-A{D}^{2}}$=2.
∴矩形ABCD是正方形,
∴BD⊥AC.
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,又PA∩AC=A,
∴BD⊥平面PAC.
(2)解:∵PA⊥平面ABCD,CD⊥AD,CD?平面ABCD,
∴CD⊥PD,
∴∠PDA是二面角P-CD-B的平面角.
在Rt△PAD中,tan∠PDA=$\frac{PA}{AD}$=1,
∴∠PDA=45°.
∴二面角P-CD-B的余弦值為$\frac{\sqrt{2}}{2}$.
點評 本題考查了矩形與正方形的性質(zhì)、線面垂直的性質(zhì)與判定定理、三垂線定理、二面角、直角三角形的邊角關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {$\frac{{2\sqrt{5}}}{5}$} | C. | [2,2$\sqrt{2}$] | D. | [$\frac{{2\sqrt{5}}}{5}$,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com