A. | k=-2 | B. | k=$\frac{1}{2}$ | C. | k=1 | D. | k=-1 |
分析 根據(jù)條件便知A,B,C三點(diǎn)共線,從而有$\overrightarrow{AC}=t\overrightarrow{AB}$,這樣可求出$\overrightarrow{AC},\overrightarrow{AB}$的坐標(biāo)帶入上式便可建立關(guān)于t和k的二元一次方程組,解方程組即可得出k的取值.
解答 解:A、B、C三點(diǎn)不能構(gòu)成三角形;
∴A、B、C三點(diǎn)共線;
∴存在實(shí)數(shù)t,使$\overrightarrow{AC}=t\overrightarrow{AB}$;
∴$\overrightarrow{OC}-\overrightarrow{OA}=t(\overrightarrow{OB}-\overrightarrow{OA})$;
∴(k+1,k-2)-(1,-3)=t[(2,-1)-(1,-3)];
(k,k+1)=(t,2t);
∴$\left\{\begin{array}{l}{k=t}\\{k+1=2t}\end{array}\right.$;
解得k=1.
故選:C.
點(diǎn)評(píng) 考查共線向量基本定理,向量減法的幾何意義,以及向量坐標(biāo)的減法和數(shù)乘運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-4)∪(4,+∞) | B. | (-∞,-4)∪(-1,0) | C. | (-4,-1)∪(1,4) | D. | (-∞,-4)∪(-1,0)∪(1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+$\sqrt{2}$x<-1 | B. | x2+$\sqrt{x}$+1<0 | C. | x2+$\frac{3}{x}$+1<0 | D. | x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com