分析 (1)求出f(x)的解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最大值和最小值即可;
(2)求出函數(shù)的對(duì)稱軸,根據(jù)函數(shù)f(x)的單調(diào)性,得到-sinθ≤-$\frac{1}{2}$或-sinθ≥$\frac{\sqrt{3}}{2}$,從而求出θ的范圍即可.
解答 解:(1)當(dāng)sinθ=-$\frac{1}{2}$時(shí),f(x)=${(x-\frac{1}{2})}^{2}$-$\frac{5}{4}$,
由x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],當(dāng)x=$\frac{1}{2}$時(shí),f(x)有最小值為-$\frac{5}{4}$,
當(dāng)x=-$\frac{1}{2}$時(shí),函數(shù)f(x)有最大值-$\frac{1}{4}$;
(2)由已知f(x)=x2+2sinθ•x-1的圖象的對(duì)稱軸為x=-sinθ,
要使f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調(diào)函數(shù),
則-sinθ≤-$\frac{1}{2}$或-sinθ≥$\frac{\sqrt{3}}{2}$,
即sinθ≥$\frac{1}{2}$或sinθ≤-$\frac{\sqrt{3}}{2}$,又θ∈[0,2π),
所以θ的取值范圍是:[$\frac{π}{6}$,$\frac{5π}{6}$]∪[$\frac{4π}{3}$,$\frac{5π}{3}$].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查二次函數(shù)的性質(zhì)以及三角函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 135° 第二象限 | B. | 361° 第一象限 | C. | 900° 第二象限 | D. | -421° 第三象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2016}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2 | D. | π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com