設(shè)P是⊙O:上的一點,以軸的非負(fù)半軸為始邊、OP為終邊的角記為,又向量。且.
(1)求的單調(diào)減區(qū)間;
(2)若關(guān)于的方程內(nèi)有兩個不同的解,求的取值范圍.

(1)的單調(diào)減區(qū)間是:、 ;
(2),且 .

解析試題分析:(1)由向量的數(shù)量積公式求出 ,然后利用余弦函數(shù)的單調(diào)性即求得的單調(diào)減區(qū)間;(2)三角函數(shù)中的不等式或方程的問題都借助函數(shù)圖象解決. 關(guān)于的方程內(nèi)有兩個不同的解等價于直線與函數(shù)的圖象在內(nèi)有兩個不同的交點.結(jié)合圖象可找出的范圍,從而得的范圍.
試題解析:(1)由條件知,所以
        2分
遞減,則,即
                        4分
,所以的單調(diào)減區(qū)間是:、    6分
(2)因,則。為保證關(guān)于的方程有兩個不同解,借助函數(shù)圖象可知:,即               9分
所以得:,且       12分
考點:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△,已知
(1)求角值;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值,并指出取到最大值時對應(yīng)的的值;
(2)若,且,計算的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C滿足4sinAsinC-2cos(A-C)=1.
(Ⅰ)求角B的大;
(Ⅱ)求sinA+2sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其圖象上相鄰兩條對稱軸之間的距離為,且過點
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若時,的最小值為– 2 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角所對邊長分別為,。
(1)求的最大值;  (2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求的值;
(2)若是第三象限的角,化簡三角式,并求值.

查看答案和解析>>

同步練習(xí)冊答案