【題目】已知,.

(1)求的極值;

(2) 函數(shù)有兩個(gè)極值點(diǎn),,若恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)處取得極小值,且極小值,無極大值.

(2).

【解析】分析:(1)由題意,求得,令,得,得到函數(shù)的單調(diào)性,進(jìn)而求解函數(shù)的極值;

(2)由已知 ,求得

當(dāng)時(shí),令得當(dāng)時(shí),得,設(shè),利用導(dǎo)數(shù)求得的單調(diào)性與最值,即可求解.

詳解:(1)的定義域?yàn)?/span>,,

,得,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,

所以處取得極小值,且極小值,無極大值.

(2) ,其定義域?yàn)?/span>,

,

當(dāng)時(shí),僅有一解,不合題意.

當(dāng)時(shí),令.

由題意得,,且,所以,

此時(shí)的兩個(gè)極值點(diǎn)分別為,.

當(dāng)時(shí),,所以,,

,而,又恒成立,則.

當(dāng)時(shí),,所以,,

.

設(shè),則 ,

所以上為減函數(shù),,

所以

恒成立,則.

綜上所述,實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號(hào)三次,其規(guī)則是依次裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的一個(gè)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的二號(hào)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的三號(hào)搖號(hào)機(jī)各搖號(hào)一次,其優(yōu)惠情況為:若搖出個(gè)幸運(yùn)號(hào)則打折,若搖出個(gè)幸運(yùn)號(hào)則打折;若搖出個(gè)幸運(yùn)號(hào)則打折;若沒有搖出幸運(yùn)號(hào)則不打折.

(1)若某型號(hào)的車正好萬元,兩個(gè)顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

(2)若你評優(yōu)看中一款價(jià)格為萬的便型轎車,請用所學(xué)知識(shí)幫助你朋友分析一下應(yīng)選擇哪種付款方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機(jī)地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

總計(jì)

30

45

25

45

總計(jì)

90

(1)求①②③④處分別對應(yīng)的值;

(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)同時(shí)滿足:對于定義域上的任意,恒有;對于定義域上的任意.當(dāng),恒有.則稱函數(shù)理想函數(shù),則下列三個(gè)函數(shù)中:

1,

2,

3

稱為理想函數(shù)的有 (填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系xOy中,直線l:y=x,圓C: (φ為參數(shù)),以坐標(biāo)原點(diǎn)為為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. (Ⅰ)求直線l與圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C的交點(diǎn)為M,N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)y=fx),滿足f2=0,函數(shù)y=fx+1)的圖象關(guān)于點(diǎn)(-1,0)中心對稱,且對任意的負(fù)數(shù)x1,x2x1x2),恒成立,則不等式fx)<0的解集為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的中值點(diǎn)”.

下列函數(shù):①;;中,在區(qū)間[0,1]中值點(diǎn)多于一個(gè)的函數(shù)序號(hào)為_________.(寫出所有滿足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A、B、C的對邊分別為a,b,c,且△ABC的面積S=
(1)求角B的大;
(2)若a=2,且 , 求邊c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線y=x2+m的頂點(diǎn)M到直線l:(t為參數(shù))的距離為1
(Ⅰ)求m:
(Ⅱ)若直線l與拋物線相交于A,B兩點(diǎn),與y軸交于N點(diǎn),求|S△MAN﹣S△MBN|的值.

查看答案和解析>>

同步練習(xí)冊答案