(1)坐標(biāo)平面內(nèi)的所有點;

(2)所有小于零的整數(shù);

(3)某校高一(1)班的高個子學(xué)生;

(4)某一天到某商店買過貨的顧客.

以上四者不能構(gòu)成集合的是哪幾個?

答案:
解析:

因為沒有規(guī)定“高個子”的標(biāo)準(zhǔn),所以(3)不能組成集合.由于(1)(2)(4)中的對象具有確定性,因此可以組成集合.


提示:

判斷指定的對象能不能構(gòu)成集合,關(guān)鍵在于能否找到一個明確的標(biāo)準(zhǔn),看對象是不是確定的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點E、F、G分別為線段PA、PD和CD的中點.
(1)求異面直線EG與BD所成角的大;
(2)在線段CD上是否存在一點Q,使得點A到平面EFQ的距離恰為
4
5
?若存在,求出線段CQ的長;若不存在,請說明理由.
(文)已知坐標(biāo)平面內(nèi)的一組基向量為
e
1
=(1,sinx)
,
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)當(dāng)
e
1
e
2
都為單位向量時,求|
a
|
;
(2)若向量
a
和向量
b
=(1,2)
共線,求向量
e
1
e
2
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+2x在閉區(qū)間[a,b]上的值域為[-1,3],則滿足題意的有序?qū)崝?shù)對(a,b)在坐標(biāo)平面內(nèi)所對應(yīng)點組成圖形的長度為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)已知F1(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個定點,動點P滿足|PF1|+|PF2|=2
2
,記點P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點O為坐標(biāo)原點,點A,B,C是曲線Γ上的不同三點,且
OA
+
OB
+
OC
=
0

(ⅰ)試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論;
(ⅱ)當(dāng)直線AB過點F1時,求直線AB、OC與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,點E、F、G分別為線段PA、PD和CD的中點.
(1)求異面直線EG與BD所成角的大;
(2)在線段CD上是否存在一點Q,使得點A到平面EFQ的距離恰為?若存在,求出線段CQ的長;若不存在,請說明理由.
(文)已知坐標(biāo)平面內(nèi)的一組基向量為,其中,且向量
(1)當(dāng)都為單位向量時,求;
(2)若向量和向量共線,求向量的夾角.

查看答案和解析>>

同步練習(xí)冊答案