【題目】如圖,已知ABCD為平行四邊形,∠A=60°,線段AB上點F滿足AF=2FB,AB長為12,點E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點D在平面BCEF上的射影恰在直線BC上.

(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DE與平面BCEF所成角的正弦值.

【答案】(Ⅰ)證明:EF⊥DN,EF⊥BN,

∴EF⊥平面BDN,

∴平面BDN⊥平面BCEF,

又∵BN為平面BDN與平面BCEF的交線,

∴D在平面BCEF上的射影在直線BN上,

而D在平面BCEF上的射影在BC上,

∴D在平面BCEF上的射影即為點B,

即BD⊥平面BCEF.

(Ⅱ)解:如圖,D在平面BCEF上的射影點為點B,

∴∠DEB為DE與平面BCEF所成的角,

DE=AF=8,NF=2,NE=4,NB=2 ,NB⊥NE,

∴BE=2 ,DB= =6,

∴sin∠DEB= = ,

即直線DE與平面BCEF所成角的正弦值為


【解析】(1)要證BD⊥BCEF,只需要證明D在平面BCEF上的射影即為點B即可;(2)連接BE,由于D在平面BCEF上的射影點為點B,故∠DEB為DE與平面BCEF所成的角,利用幾何關系得出正弦值.
【考點精析】認真審題,首先需要了解直線與平面垂直的判定(一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想),還要掌握空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3 (1﹣a)x2﹣3ax+1,a>0.
(1)試討論f(x)(x≥0)的單調(diào)性;
(2)證明:對于正數(shù)a,存在正數(shù)p,使得當x∈[0,p]時,有﹣1≤f(x)≤1;
(3)設(1)中的p的最大值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣a+lnx.
(Ⅰ)若a=1,求證:當x>1時,f(x)>2x﹣1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0 , 求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體ABCDEF中,ABCD為直角梯形,AB∥CD,∠DAB=90°,四邊形ADEF為等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.

(1)求證:平面ABCD⊥平面ADEF;
(2)求直線CF與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,且
(1)求角B的大;
(2)若 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù) 沒有零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為(  )
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.

查看答案和解析>>

同步練習冊答案