【題目】某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為ykm.
(I)按下列要求寫出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請你選用(I)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長度最短.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面為菱形,底面,點是上的一個動點,,.
(1)當(dāng)時,求證:;
(2)當(dāng)平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .
(Ⅰ)求證:∥平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點P(2,1).
(1)求橢圓C的方程,并求其離心率;
(2)過點P作x軸的垂線l,設(shè)點A為第四象限內(nèi)一點且在橢圓C上(點A不在直線l上),點A關(guān)于l的對稱點為A',直線A'P與C交于另一點B.設(shè)O為原點,判斷直線AB與直線OP的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為.
(1)求乙至多擊目標(biāo)2次的概率;
(2)記甲擊中目標(biāo)的次數(shù)為,求的概率分布列及數(shù)學(xué)期望;
(3)求甲恰好比乙多擊中目標(biāo)2次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知底面ABCD是邊長為1的正方形,側(cè)面PAD⊥平面ABCD,PA=PD,PA與平面PBC所成角的正弦值為。
(1)求側(cè)棱PA的長;
(2)設(shè)E為AB中點,若PA≥AB,求二面角B-PC-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個六邊形點陣,它的中心是1個點(第1層),第2層每邊有2個點, 第3層每邊有3個點,…,依此類推,若一個六邊形點陣共有217個點,那么它的層數(shù)為( )
A.10B.9C.8D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y關(guān)于x的回歸方程;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額;
附:①;.
②參考數(shù)據(jù)如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com