分析 (1)設(shè)M坐標為(x,y),利用直線AM,BM相交于M,且它們的斜率之積為2,即可確定出M的軌跡方程;
(2)設(shè)出C與D坐標,分別代入M的軌跡方程,整理由根據(jù)N為CD中點,求出直線l斜率,即可確定出直線l方程.
解答 解:(1)設(shè)M(x,y),
∵直線AM,BM相交于M,且它們的斜率之積為2,
∴$\frac{y}{x+1}•\frac{y}{x-1}$=2,
則動點M的軌跡方程為2x2-y2=2(x≠±1);
(2)由(1)得M的軌跡方程為2x2-y2=2(x≠±1),
設(shè)點C(x1,y1),D(x2,y2),則有2x12-y12=2①,2x22-y22=2②,
①-②得:2(x1-x2)(x1+x2)-(y1-y2)(y1+y2)=0,
∵N($\frac{1}{2}$,1)為CD的中點,
∴x1+x2=1,y1+y2=2,
∴直線l的斜率k=1,
∴直線l的方程為y-1=x-$\frac{1}{2}$,即2x-2y+1=0.
點評 此題考查了軌跡方程,直線的點斜式方程,熟練掌握運算性質(zhì)是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “非p”是假命題 | B. | “非q”是真命題 | C. | “p且q”為真命題 | D. | “p或q”為真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 5 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$ | B. | f(x)=x0,g(x)=1 | ||
C. | $f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$ | D. | $f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 21 | B. | 9 | C. | 5 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com