設(shè)向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),則“
a
b
”是“tanθ=
1
2
”成立的
 
條件 (選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)向量平行的坐標(biāo)關(guān)系,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:若
a
b
,則sin2θ-cosθcosθ=0,
即2sinθcosθ-cosθcosθ=0,
即cosθ(2sinθ-cosθ)=0,
則cosθ=0或tanθ=
1
2

a
b
”是“tanθ=
1
2
”成立必要不充分條件,
故答案為:必要不充分.
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,根據(jù)向量平行的坐標(biāo)公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若正實(shí)數(shù)x,y滿足條件ln(x+y)=0,則
2x+y
xy
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中,兩個(gè)集合相等的是( 。
A、M={(1,2)},N={(2,1)}
B、M={1,2},N={(1,2)}
C、M={x|x=2k+1,k∈Z},N={x|x=2k-1,k∈Z}
D、M={(x,y)|
y-1
x-2
=1},N={(x,y)|y-1=x-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出數(shù)表:請?jiān)谄渲姓页?個(gè)不同的數(shù),使它們由小到大能構(gòu)成等比數(shù)列,則這5個(gè)數(shù)依次可以說是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
12
x3-
1
4
x2+cx+d(c,d∈R),滿足f(0)=0,f′(1)=0
(1)求c,d的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f′(x)+h(x)<0;
(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,求出實(shí)數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)
圖象的兩條相鄰的對稱軸之間的距離為
π
2
,且該函數(shù)圖象關(guān)于點(diǎn)(x0,0)成中心對稱,x0∈[0,
π
2
]
,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先將函數(shù)f(x)=sinxcosx的圖象向左平移
π
4
個(gè)長度單位,再保持所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)壓縮為原來的
1
2
,得到函數(shù)g(x)的圖象,則使g(x)為增函數(shù)的一個(gè)區(qū)間是( 。
A、(
π
4
,
π
2
B、(
π
2
,π)
C、(0,
π
2
D、(-π,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}為等比數(shù)列,且滿足a1+a2=12,a2a4=1則a1=( 。
A、9或
1
16
B、
1
9
或16
C、
1
9
1
16
D、9或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:(1)2≤(1+
1
n
n<3,其中n∈N*;
(2)證明:對任意非負(fù)整數(shù)n,33n-26n-1可被676整除.

查看答案和解析>>

同步練習(xí)冊答案