【題目】已知函數(shù)

1時,求函數(shù)的單調區(qū)間;

2是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

【答案】1時,函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為,當時,函數(shù)的單調遞增區(qū)間為2.

【解析】

試題分析:1借助題設條件運用導數(shù)的知識;2借助題設運用導數(shù)的知識求解探求.

試題解析:

1函數(shù)的定義域為

,

時,

,得,或,

,得,

故函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為,

時,恒成立,

故函數(shù)的單調遞增區(qū)間為.

2恒成立等價于恒成立,

時,即當時,,

內不能恒成立,

時,即當時,則,

內不能恒成立,

時,即當時,

,

解得,

時,;

時,.

所以,

解得.

綜上,當時,內恒成立,即恒成立,

所以實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖.

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程.

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左右焦點分別為,,點滿足

() 求橢圓的離心率;

() 設直線與橢圓相交于兩點,若直線與圓相交于,兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

利潤

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測月和月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過萬?

相關公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線被圓所截得的弦長為8.

(1)求圓的方程;

(2)若直線與圓切于點,當直線軸正半軸,軸正半軸圍成的三角形面積最小時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內角的對邊分別為,已知

(1);

(2),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為原點的直角坐標系中,點的直角頂點,已知,且點的縱坐標大于0.

(1)的坐標;

(2)求圓關于直線對稱的圓的方程;在直線上是否存在點,過點的任意一條直線如果和圓都相交,則該直線被兩圓截得的線段長相等,如果存在求出點的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線互相平行,求的值;

2)求的單調區(qū)間;

3)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

的極值點,求實數(shù)的值;

上為增函數(shù),求實數(shù)的取值范圍;

III時,方程有實根,求實數(shù)的最大值.

查看答案和解析>>

同步練習冊答案