已知數(shù)列{an},{bn}分別是等差、等比數(shù)列,且a1=b1=1,a2=b2,a4=b3≠b4
①求數(shù)列{an},{bn}的通項公式;
②設(shè)Sn為數(shù)列{an}的前n項和,求{
1
Sn
}的前n項和Tn;
③設(shè)Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn
①設(shè){an}的公差為d,{bn}的公比為q,則依題意
1+d=q
1+3d=q2
q≠1
?
q=2
d=1

∴an=1+(n-1)×1=n;
bn=1×2n-1=2n-1.(4分)
②∵sn=
n(n+1)
2
?
1
sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
).
∴Tn=
1
s1
+
1
s2
+…+
1
sn

=2[(
1
1
-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1

=
2n
n+1
.(8分)
③∵Cn=
n•2n-1
(n+1)(n+2)
2
=
n•2n
(n+1)(n+2)
=
2n+1
n+2
-
2n
n+1

∴Rn=C1+C2+…+Cn
=(
22
3
-
21
2
)+(
23
4
-
22
3
)+…+(
2n+1
n+2
-
2n
n+1

=
2n+1
n+2
-1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1<0,
an+1
an
=
1
2
,則數(shù)列{an}是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,試證明數(shù)列{bn}為等比數(shù)列;
(II)求數(shù)列{an}的通項公式an與前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+3n+1,則數(shù)列{an}的通項公式為
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n,那么它的通項公式為an=
2n
2n

查看答案和解析>>

同步練習冊答案