20.直線l?平面α,過空間任一點A且與l、α都成40°角的直線有且只有2條.

分析 由題研究線與面的夾角與線與面內(nèi)線的夾角相等時的線的個數(shù)問題,可由線面角的定義判斷,且判斷時要結(jié)合相應(yīng)的圖象,由圖象輔助做出判斷.

解答 解:由于線與面的夾角是線與線在面內(nèi)的投影的夾角,由題設(shè)條件直線l?平面α,過平面α外一點A作直線,與l,α都成40°角,由此線在面內(nèi)的投影必與l平行,如圖,這樣的直線有兩條.
故答案為:2.

點評 本題考查直線與平面所成的角,解題的關(guān)鍵是理解直線與平面所成的角的定義,由定義判斷出這樣的直線的條數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知兩數(shù)列{an},{bn}滿足${b_n}=1+{3^n}{a_n}$(n∈N*),3b1=10a1,其中{an}是公差大于零的等差數(shù)列,且a2,a7,b2-1成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={t|函數(shù)f(x)=lg[(t+2)x2+2x+1]的值域為R},B={x|(ax-1)(x+a)>0}
(1)求集合A;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)的圖象如圖所示,則f(x)的解析式是(  )
A.f(x)=-|x|-1B.f(x)=|x-1|C.f(x)=-|x|+1D.f(x)=|x+1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓C:x2+y2=1關(guān)于直線l:x+y=1對稱的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
(1)求m;
(2)當(dāng)a>1時,若函數(shù)f(x)的圖象與直線l:y=-mx+n無公共點,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若命題:“?x∈R,ax2-ax-1≤0”是真命題,則實數(shù)a的取值范圍是[-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=lnx+x2-2ax+a2,a∈R.
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[1,3]上不存在單調(diào)增區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=xk,x∈R,k為常數(shù).
(Ⅰ)當(dāng)k=3時,判斷函數(shù)f(x)的奇偶性,并說明理由;
(Ⅱ)當(dāng)k=1時,設(shè)函數(shù)g(x)=f(x)+$\frac{4}{f(x)}$,判斷函數(shù)g(x)在區(qū)間(0,2]上的單調(diào)性,利用函數(shù)單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案