4.在Rt△ABC中,兩直角邊分別為a,b,設h為斜邊上的高,則$\frac{1}{h^2}$=$\frac{1}{a^2}$+$\frac{1}{b^2}$,類比此性質(zhì),如圖,在四面體P-ABC 中,若PA,PB,PC兩兩垂直,且長度分別為a,b,c,設棱錐底面ABC上的高為h,則得到的正確結(jié)論為$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$.

分析 立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點?點或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關系即可.

解答 解:∵PA、PB、PC兩兩互相垂直,
∴PA⊥平面PBC.
設PD在平面PBC內(nèi)部,且PD⊥BC,
由已知有:PD=$\frac{bc}{\sqrt{^{2}+{c}^{2}}}$,h=PO=$\frac{a•PD}{\sqrt{{a}^{2}+P{D}^{2}}}$,
∴h2=$\frac{{a}^{2}^{2}{c}^{2}}{{a}^{2}^{2}+^{2}{c}^{2}+{c}^{2}{a}^{2}}$,即 $\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$.
故答案為:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$.

點評 類比推理是指依據(jù)兩類數(shù)學對象的相似性,將已知的一類數(shù)學對象的性質(zhì)類比遷移到另一類數(shù)學對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$,滿足:|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-1
(1)求:$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|;
(3)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{a}$-$\overrightarrow$|=1,則|$\overrightarrow$|的取值范圍是[1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.命題“?x0∈∁RQ,x0∈Q”的否定是( 。
A.?x0∉∁RQ,x0∈QB.?x0∈∁RQ,x0∈QC.?x∉∁RQ,x∉QD.?x∈∁RQ,x∉Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.把邊長為1的正方形ABCD沿對角線BD折起,形成三棱錐C-ABD,它的正視圖與俯視圖如圖所示,則三棱錐C-ABD的體積為$\frac{\sqrt{2}}{12}$,表面積為1+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=$\frac{1}{2}$x+cosx在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值為$\frac{π}{12}$+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某地四月份刮東風的概率是$\frac{8}{30}$,既刮東風又下雨的概率是$\frac{7}{30}$,則該地四月份刮東風的條件下,下雨的概率為( 。
A.$\frac{8}{30}$B.$\frac{7}{8}$C.$\frac{1}{8}$D.$\frac{7}{30}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若A∩B=∅,則實數(shù)m的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-bx+c,f(x)在點(1,f(1))處的切線方程為x+y+4=0
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間[$\frac{1}{2}$,5]內(nèi),恒有f(x)≥x2+lnx+kx成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案