在各項(xiàng)均不為零的等差數(shù)列{an}中,若an2-an+1=an-1(n≥2,n∈N*),則S2014=( 。
A、2013B、2014
C、4026D、4028
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:在等差數(shù)列中,an-1+an+1=2an,代入到題中等式中,即可求出結(jié)果.
解答: 解:∵an2-an+1=an-1,
∴an2-an-1-an+1=0,又等差數(shù)列中,an-1+an+1=2an
∴an2=2an,∴an=2,∴an為各項(xiàng)為2的常數(shù)列.
∴S2014=2×2014=4028.
故選:D.
點(diǎn)評(píng):本題中先根據(jù)等差數(shù)列的性質(zhì)得到該數(shù)列是常數(shù)列,再求解,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,B,C的對(duì)邊分別為a,b,c,且2ccos2
A
2
)=b+c,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是函數(shù)f(x)=x3+ax2+(a-6)x(a∈R)的導(dǎo)函數(shù),若f′(x)滿足f′(x+1)=f′(1-x),則以下結(jié)論正確的是(  )
A、函數(shù)f(x)的極大值為0
B、函數(shù)f(x)的極小值為5
C、函數(shù)f(x)的極大值為27
D、函數(shù)f(x)的極小值為-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=21.2,b=(
1
2
-0.8,c=log32,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(2)=2,f(2)=3,則
lim
x→2
f(x)-3
x-2
+1的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是(  )
A、2.71.5>2.71.63
B、0.782<0.783
C、π2π
2
D、0.9π<0.93

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,|φ|<
π
2
)直線x=
2
3
π對(duì)稱,且它的最小正周期為π,則( 。
A、f(x)的圖象經(jīng)過點(diǎn)(0,
1
2
B、f(x)在區(qū)間[
5
12
π,
2
3
π]上是減函數(shù)
C、f(x)的最大值為A
D、f(x)的圖象的一個(gè)對(duì)稱中心是(
5
12
π,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為常數(shù),函數(shù)f(x)=x2+aln(1+x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),則( 。
A、f(x2)<
1-2ln2
4
B、f(x2)>
1-2lnx
4
C、f(x2)>
2ln2+3
8
D、f(x2)<
3ln2+4
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑,AA1=AC=CB=2.E,F(xiàn)分別為AC,BC上的動(dòng)點(diǎn),且CE=BF.
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)設(shè)CE=BF=x,當(dāng)x為何值時(shí),三棱錐C1-ECF的體積最大,最大值為多少?
(Ⅲ)若F為線段BC的中點(diǎn),請(qǐng)問CC1上是否存在點(diǎn)M,使得B1M⊥C1O,若存在請(qǐng)求出C1M的長,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案