某產(chǎn)品具有一定的時(shí)效性,在這個(gè)時(shí)效期內(nèi),由市場(chǎng)調(diào)查可知,在不做廣告宣傳且每件獲利a元的前提下,可賣出b件;若做廣告宣傳,廣告費(fèi)為n千元比廣告費(fèi)為千元時(shí)多賣出件。
(1)試寫出銷售量與n的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),廠家應(yīng)該生產(chǎn)多少件產(chǎn)品,做幾千元的廣告,才能獲利最大?

(1)(2)

解析試題分析:
(1)根據(jù)若做廣告宣傳,廣告費(fèi)為n千元比廣告費(fèi)為千元時(shí)多賣出件,可得,利用疊加法可求得.
(2)根據(jù)題意在時(shí),利潤(rùn),可利用求最值.
試題解析:
(1)設(shè)表示廣告費(fèi)為0元時(shí)的銷售量,由題意知

由疊加法可得
即為所求。
(2)設(shè)當(dāng)時(shí),獲利為元,
由題意知,,
欲使最大,則,易知,此時(shí).
考點(diǎn):疊加法求通項(xiàng),求最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知4個(gè)命題:
①若等差數(shù)列的前n項(xiàng)和為則三點(diǎn)共線;
②命題:“”的否定是“”;
③若函數(shù)在(0,1)沒有零點(diǎn),則k的取值范圍是
是定義在R上的奇函數(shù),的解集為(2,2)
其中正確的是     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校高一學(xué)生1000人,每周一次同時(shí)在兩個(gè)可容納600人的會(huì)議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個(gè)學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個(gè)課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會(huì)有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會(huì)有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù)
(2)①證明數(shù)列是等比數(shù)列,并用表示;
②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,數(shù)列滿足
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a4a5=55,a3+a6=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}和數(shù)列{bn}滿足等式:
an-1=,an=為正整數(shù)),
設(shè)數(shù)列{bn}的前項(xiàng)和,cn=(an+19)(Sn+50),數(shù)列{cn}前n項(xiàng)和為Tn
求Tn的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,若,為常數(shù)),則稱數(shù)列.
(1)若數(shù)列數(shù)列,,,寫出所有滿足條件的數(shù)列的前項(xiàng);
(2)證明:一個(gè)等比數(shù)列為數(shù)列的充要條件是公比為;
(3)若數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為.是否存在
正整數(shù),使不等式對(duì)一切都成立?若存在,求出的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項(xiàng)和為,求(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,.
(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,若,點(diǎn)在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足,求數(shù)列的前項(xiàng)和
⑶設(shè),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案