19.已知2sinθ-cosθ=1,3cosθ-2sinθ=a,記數(shù)a形成的集合為A,若x∈A,y∈A,則以點(diǎn)P(x,y)為頂點(diǎn)的平面圖形可以是.
A.正方形B.五邊形C.三角形D.線段

分析 由已知及同角的三角函數(shù)基本關(guān)系式的應(yīng)用可解得sinθ,cosθ的值,即可解得集合A,在坐標(biāo)系中即可得解.

解答 解:由2sinθ-cosθ=1及sin2θ+cos2θ=1,
可以解得sinθ=0,cosθ=-1或sinθ=$\frac{4}{5}$,cos=$\frac{3}{5}$,
從而可以知道a=-3或$\frac{1}{5}$,所以A={-3,$\frac{1}{5}$},
因?yàn)棣葘儆贏,y屬于A,所以P點(diǎn)的坐標(biāo)可以是(-3,-3)或($\frac{1}{5}$,$\frac{1}{5}$)或(-3,$\frac{1}{5}$)或($\frac{1}{5}$,-3)四個(gè)點(diǎn),
將這些坐標(biāo)在直角坐標(biāo)系中表示出來即可發(fā)現(xiàn),這是一個(gè)正方形.
故選:A.

點(diǎn)評(píng) 本題主要考查了同角的三角函數(shù)基本關(guān)系式的應(yīng)用,考查了集合的相關(guān)知識(shí),屬于基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)定義域?yàn)镽的函數(shù)f(x)滿足$f(x+1)=\frac{1}{2}+\sqrt{f(x)-{{[f(x)]}^2}}$,且$f(-1)=\frac{1}{2}$,則f(2016)的值為( 。
A.$\frac{1}{2}$B.-1C.1D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知cosθ=-$\frac{3}{5}$,且$\frac{π}{2}$<θ<π,則cos($\frac{π}{6}$-θ)=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,?ABCD中,E、F分別是BC、DC的中點(diǎn),BF與DE交于點(diǎn)G,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{DE}$;
(2)試用向量方法證明:A、G、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sinα-cosα=$\frac{3}{5}$,則sin2α的值為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的反函數(shù).
(1)y=$\frac{x-2}{x-1}$.
(2)y=$\sqrt{x}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等比數(shù)列{an}中.若a1+a2=$\frac{1}{3}$,a3+a4=1,則a7+a8+a9+a10=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求點(diǎn)A(-2,1)關(guān)于直線2x+y-1=0的對(duì)稱點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
(1)求f(x)+f(1-x)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

查看答案和解析>>

同步練習(xí)冊答案