3.已知棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱B1C1,C1D1的中點.
(I)求AD1與EF所成角的大;
(II)求AF與平面BEB1所成角的余弦值.

分析 (I)建立如圖所示的坐標系,利用向量法求AD1與EF所成角的大;
(II)求出平面BEB1的法向量,利用向量法求AF與平面BEB1所成角的余弦值.

解答 解:(I)建立如圖所示的坐標系,D(0,0,0),A(1,0,0),
E(0,$\frac{1}{2}$,1),F(xiàn)($\frac{1}{2}$,1,1),D1(0,0,1),
$\overrightarrow{A{D}_{1}}$=(-1,0,1),$\overrightarrow{EF}$=($\frac{1}{2}$,$\frac{1}{2}$,0),
設AD1與EF所成角為α,∴cosα=|$\frac{-\frac{1}{2}}{\sqrt{2}•\sqrt{\frac{1}{4}+\frac{1}{4}}}$|=$\frac{1}{2}$,
∴AD1與EF所成角的大小為60°;
(II)$\overrightarrow{B{B}_{1}}$=(0,0,1),$\overrightarrow{BE}$=(-1,-$\frac{1}{2}$,1),
設平面BEB1的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{z=0}\\{-x-\frac{y}{2}+z=0}\end{array}\right.$,
取$\overrightarrow{n}$=(1,-2,0),
∵$\overrightarrow{AF}$=(-$\frac{1}{2}$,1,1),
∴AF與平面BEB1所成角的正弦值為|$\frac{-\frac{1}{2}-2}{\sqrt{5}•\sqrt{\frac{1}{4}+1+1}}$|=$\frac{\sqrt{5}}{3}$,
∴AF與平面BEB1所成角的余弦值為$\frac{2}{3}$.

點評 本題考查線線角,考查線面角,考查向量方法的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設{$\frac{{a}_{n}}{_{n}}$}是首項為1,公比為$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.“a≤0”是“函數(shù)f(x)=ax+lnx存在極值”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設命題p:?x0∈(-2,+∞),6+|x0|=5.命題q:?x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4.命題r:若|x|+|y|≤1,則$\frac{|y|}{|x|+2}$≤$\frac{1}{2}$.
(1)寫出命題r的否命題;
(2)判斷命題¬p,p∨r,p∧q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知等差數(shù)列{an}前n項和為Sn,若S15=75,a3+a4+a5=12,則S11=( 。
A.109B.99C.$\frac{99}{2}$D.$\frac{109}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知拋物線C:y2=4x,過焦點F的直線l與拋物線C交于A,B兩點,定點M(5,0).
(Ⅰ)若直線l的斜率為1,求△ABM的面積;
(Ⅱ)若△AMB是以M為直角頂點的直角三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知命題p:?x∈R,x2-2x+1>0,則¬p是?x>1,x2-2x+1≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.一個正三棱柱的正視圖、俯視圖如圖所示,則該三棱柱的側(cè)視圖的面積為8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F(c,0),圓M:(x-a)2+y2=c2,雙曲線以橢圓C的焦點為頂點,頂點為焦點,若雙曲線的兩條漸近線都與圓M相切,則橢圓C的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案