【題目】語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如圖:
(1)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?
(2)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.
①若,則,.
②
③
0.050 | 0.040 | … | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
【答案】(1)語文成績特別優(yōu)秀的有人,數(shù)學成績特別優(yōu)秀的有人;(2)分布列見解析;;(3)有的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.
【解析】
(1)由正態(tài)分布曲線對稱性可求得,進而計算得到語文特別優(yōu)秀的頻數(shù);由頻率分布直方圖計算可得數(shù)學特別優(yōu)秀對應的頻率,進而計算得到對應頻數(shù);
(2)根據(jù)超幾何分布概率公式計算可得所有可能取值對應的概率,進而得到分布列;根據(jù)數(shù)學期望計算公式計算可得結果;
(3)由已知數(shù)據(jù)得到列聯(lián)表,計算可得,進而得到結論.
(1)設語文成績?yōu)?/span>,由可知:,,,
,
這名學生中,本次考試中語文成績特別優(yōu)秀的有人.
由頻率分布直方圖知,數(shù)學成績特別優(yōu)秀的頻率為,
這名學生中,本次考試中數(shù)學成績特別優(yōu)秀的有人.
(2)由(1)知,語文和數(shù)學只有一科特別優(yōu)秀的有人.
所有可能的取值為:,
;;
;;
的分布列為:
數(shù)學期望.
(3)由題意可得列聯(lián)表如下:
語文特別優(yōu)秀 | 語文不特別優(yōu)秀 | 合計 | |
數(shù)學特別優(yōu)秀 | |||
數(shù)學不特別優(yōu)秀 | |||
合計 |
,
有的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.
科目:高中數(shù)學 來源: 題型:
【題目】某中學采取分層抽樣的方法從應屆高三學生中按照性別抽取20名學生,其中8名女生中有3名報考理科,男生中有2名報考文科.
(1)根據(jù)以上信息,寫出列聯(lián)表;
(2)用假設檢驗的方法分析有多大的把握認為該中學的高三學生選報文理科與性別有關?
參考公式:
p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若整數(shù)滿足:,稱為離實數(shù)最近的整數(shù),記作.給出函數(shù)的四個命題:
①函數(shù)的定義域為,值域為;
②函數(shù)是周期函數(shù),最小正周期為;
③函數(shù)在上是增函數(shù);
④函數(shù)的圖象關于直線對稱.
其中所有的正確命題的序號為()
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數(shù)數(shù)據(jù)及公式:,,,,,,.
(1)若用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(2)用對數(shù)回歸模型擬合y與x的關系,可得回歸方程:,經(jīng)計算得出線性回歸模型和對數(shù)模型的分別約為0.75和0.97,請用說明選擇哪個回歸模型更合適,并用此模型預測A超市廣告費支出為8萬元時的銷售額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,直線y=k(x+1)與C相切于點A,|AF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線l交C于M,N兩點,T是MN的中點,若|MN|=8,求點T到y軸距離的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)設點;若、、成等比數(shù)列,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為F,過點的直線l與E交于A,B兩點.當l過點F時,直線l的斜率為,當l的斜率不存在時,.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com