設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,z1=2+i,則z1z2=(  )
A、-5B、5
C、-4+iD、-4-i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義求出z2,即可得到結(jié)論.
解答: 解:z1=2+i對應(yīng)的點(diǎn)的坐標(biāo)為(2,1),
∵復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,
∴(2,1)關(guān)于虛軸對稱的點(diǎn)的坐標(biāo)為(-2,1),
則對應(yīng)的復(fù)數(shù),z2=-2+i,
則z1z2=(2+i)(-2+i)=i2-4=-1-4=-5,
故選:A
點(diǎn)評:本題主要考查復(fù)數(shù)的基本運(yùn)算,利用復(fù)數(shù)的幾何意義是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,f(2)=0,若f(x-1)>0,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={2,3,4},N={0,2,3,5},則M∩N=( 。
A、{0,2}
B、{2,3}
C、{3,4}
D、{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥1
,則目標(biāo)函數(shù)z=x+2y的最小值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx.當(dāng)0≤x<π時,f(x)=0,則f(
23π
6
)=(  )
A、
1
2
B、
3
2
C、0
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是(  )
A、34B、55C、78D、89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,i是虛數(shù)單位,若a+i=2-bi,則(a+bi)2=( 。
A、3-4iB、3+4i
C、4-3iD、4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則線段y=1-x(0≤x≤1)的極坐標(biāo)方程為( 。
A、ρ=
1
cosθ+sinθ
,0≤θ≤
π
2
B、ρ=
1
cosθ+sinθ
,0≤θ≤
π
4
C、ρ=cosθ+sinθ,0≤θ≤
π
2
D、ρ=cosθ+sinθ,0≤θ≤
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知數(shù)列{an}滿足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)計算:(a3-a1)+(a5-a3),并求a5
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)記數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊答案