【題目】設(shè)是定義在上的奇函數(shù),,當(dāng)時(shí),恒成立,則不等式的解集為

A. B.

C. D.

【答案】D

【解析】

由已知當(dāng)時(shí),恒成立,可判斷函數(shù) 為減函數(shù),由是定義在R上的奇函數(shù),可得g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,結(jié)合g(x)的圖象,解不等式即可

設(shè)則g(x)的導(dǎo)數(shù)為 ∵當(dāng)x>0時(shí)總有xf′(x)<f(x)成立,即當(dāng)x>0時(shí),g′(x)<0,∴當(dāng)x>0時(shí),函數(shù)為減函數(shù),又,∴函數(shù)g(x)為定義域上的偶函數(shù)又∵

∴函數(shù)g(x)的圖象如圖:數(shù)形結(jié)合可得

∵xf(x)>0且,f(x)=xg(x)(x≠0)

∴x2g(x)>0∴g(x)>0 ∴0<x<1-1<x<0 故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,EF分別是、CD的中點(diǎn),(1)證明: ;(2)求異面直線所成的角;(3)證明:平面平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓長軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過點(diǎn)P。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)

1

2

3

4

5

6

7

人均純收入

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于的線性回歸方程;

(2)判斷y與之間是正相關(guān)還是負(fù)相關(guān)?

(3)預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2|cosx|sinx+sin2x,給出下列四個(gè)命題:
①函數(shù)f(x)的圖象關(guān)于直線 對(duì)稱;
②函數(shù)f(x)在區(qū)間 上單調(diào)遞增;
③函數(shù)f(x)的最小正周期為π;
④函數(shù)f(x)的值域?yàn)閇﹣2,2].
其中真命題的序號(hào)是 . (將你認(rèn)為真命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案