6.如圖,線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,且AB=1,AC=BD=4,BD與α所成角的正弦值為$\frac{1}{4}$,則CD=( 。
A.5B.$\frac{11}{2}$C.6D.7

分析 過B作BE⊥α于B,且BE=24,連接CE、DE,利用線段BD與平面α所成的角,求出ED,即可得出結(jié)論..

解答 解:過B作BE⊥α于B,且BE=4(目的是把AC平移到BE),
連接CE、DE,
∵BD⊥AB、BE⊥AB,∴CE⊥平面BDE,∴∠CED=90°,
∵BD與α所成角的正弦值為$\frac{1}{4}$,BE=4,BD=4
∴ED=$\sqrt{16+16-2×4×4×\frac{1}{4}}$=2$\sqrt{6}$
在Rt△CDE中,CE=1,CD=$\sqrt{24+1}$=5.
故選A.

點評 本題考查線面角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{2}sin({x-{{45}°}})-sinx$( 。
A.是奇函數(shù)但不是偶函數(shù)B.是偶函數(shù)但不是奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{2\sqrt{5}}}{5}$,過點F2且與x軸垂直的直線被橢圓截得的線段長為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)設(shè)過點F2的直線l與橢圓相交于A,B兩點,若M(-6,0),求當三角形MAB的面積S最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.點M的極坐標$(4,\frac{5π}{6})$化成直角坐標的結(jié)果是$(-2\sqrt{3},2)$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.P點在曲線$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,點Q在曲線θ=$\frac{π}{4}$(ρ∈R)上,則|PQ|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{3}$,坐標原點到直線l:y=bx+2的距離為$\sqrt{2}$,
(1)求橢圓的方程;
(2)若直線y=kx+2(k≠0)與橢圓相交于C、D兩點,是否存在實數(shù)k,使得以CD為直徑的圓過點E(-1,0)?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+2)-x2+mx+n在點x=1處的切線與直線3x+7y+1=0垂直,且f(-1)=0;
(1)求實數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知拋物線E:y2=2px(p>0)的準線方程為x=-$\frac{1}{16}$.
(1)求拋物線的方程;
(2)定長為2的線段MN的兩端點在拋物線E上移動,O為坐標原點,點P滿足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,求點P到y(tǒng)軸距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.tan17°+tan28°+tan17°tan28°等于( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-1D.1

查看答案和解析>>

同步練習冊答案