分析 (1)由已知中的準線方程,求出p值,可得拋物線的方程;
(2)先設出M,N的坐標,根據(jù)拋物線方程可求得其準線方程,進而可表示出M到y(tǒng)軸距離,根據(jù)拋物線的定義結(jié)合兩邊之和大于第三邊且A,B,F(xiàn)三點共線時取等號判斷出$\frac{|MF|+|NF|}{2}$的最小值即可.
解答 解:(1)∵拋物線E:y2=2px(p>0)的準線方程為x=-$\frac{1}{16}$.
∴$\frac{p}{2}$=$\frac{1}{16}$,
解得:p=$\frac{1}{8}$,
即拋物線E的方程為:y2=$\frac{1}{4}$x;
(2)設M(x1,y1),N(x2,y2),
∵點P滿足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,故P為MN的中點,
P到y(tǒng)軸距離S=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{|MF|+|NF|}{2}$-$\frac{1}{16}$≥$\frac{|MN|}{2}$-$\frac{1}{16}$=1-$\frac{1}{16}$=$\frac{15}{16}$,
當且僅當M,N過F點時取等號,
點評 本小題主要考查拋物線的簡單性質(zhì)、利用不等式求最值等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\frac{11}{2}$ | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 公差為1的等差數(shù)列 | B. | 公差為$\frac{1}{3}$的等差數(shù)列 | ||
C. | 公差為-$\frac{1}{3}$的等差數(shù)列 | D. | 不是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{\sqrt{30}}{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com