已知雙曲線
x2
2
-
y2
2
=1
的準線過橢圓
x2
4
+
y2
b2
=1
的焦點,且直線y=kx+2與橢圓在第一象限至多只有一個交點,則實數(shù)k的取值范圍為
(-∞,1]∪[-
1
2
,+∞)
(-∞,1]∪[-
1
2
,+∞)
分析:先求得準線方程,可推知a和b的關(guān)系,進而根據(jù)c2=a2-b2求得b,橢圓的方程可得,與直線y=kx+2聯(lián)立消去y,根據(jù)判別式等于0求得k,結(jié)合圖形可得k的范圍.
解答:解:根據(jù)題意,易得準線方程是x=±
a2
b
=±1
所以c2=a2-b2=4-b2=1即b2=3
所以方程是
x2
4
+
y2
3
=1
聯(lián)立y=kx+2可得3x2+(4k2+16k)x+4=0
由△=0,解得k=-
1
2

當直線y=kx+2過點A(2,0)時,k=-1,結(jié)合可得,直線y=kx+2與橢圓在第一象限至多只有一個交點,則實數(shù)k的取值范圍為 (-∞,1]∪[-
1
2
,+∞).
故答案為:(-∞,1]∪[-
1
2
,+∞).
點評:本題主要考查了直線與圓錐曲線的綜合問題.解題的關(guān)鍵是先根據(jù)橢圓的性質(zhì)求出橢圓的方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別是F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在雙曲線上、則
PF1
PF2
=( 。
A、-12B、-2C、0D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1,F(xiàn)2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x22
-y2=1
,過點P(0,1)作斜率k<0的直線l與雙曲線恰有一個交點.
(1)求直線l的方程;
(2)若點M在直線l與x≥0,y≥0所圍成的三角形的三條邊上及三角形內(nèi)運動,求z=-x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
的夾角大小為( 。

查看答案和解析>>

同步練習冊答案